

Computer Application

(Th- 01-b)

(As per the 2020-21 syllabus of the SCTE&VT,

Bhubaneswar, Odisha)

First & Second

Semester

Computer Science & Engineering

Prepared By: Er. T K Ojha

BHADRAK ENGINEERING SCHOOL & TECHNOLOGY

(BEST), ASURALI, BHADRAK

COMPUTER APPLICATION (TH.1.b)

Topic Wise Distribution of Marks

1. Ch1 Computer Organization ----10marks

2. Ch2 Computer Software ---- 15 marks

3. CH-3- Computer Network and Internet—15 mark

4. Ch-4 File Management and data processing-10marks

5. Ch-5 ---Problem Solving Methodology—10marks

6. Ch-6 –Overview of C programming language 25marks

7. Ch-7 -Advance Features of C. – 25marks

CH1 -COMPUTER ORGNISATION

1.1/1.2EVOLUTION OF COMPUTERS

• Computers are devices that accomplish tasks or calculations in accordance

to a set of directions, or programs.

• The first fully electronic computers, introduced in the 1940s, were

voluminous devices that required teams of people to handle.

• In comparison to those new machines, today’s computers are astounding.

Computers work through an interaction of hardware and software. The

whole picture of the computer goes back to decades. However, there are

five apparent generations of computers.

• Each generation is defined by a paramount technological development that

changes necessarily how computers operate – leading to more compressed,

inexpensive, but more dynamic, efficient and booming machines.

1.3 First Generation – Vacuum Tubes (1940 – 1956)

• These ancient computers utilized vacuum tubes as circuitry and magnetic

drums for recollection. As a result, they were huge, actually taking up entire

rooms and costing resources to run.

• These were ineffective materials which produce a huge amount of heat,

sucked enormous electricity and subsequently engendered an abundance of

heat which caused perpetual breakdowns.

• These first-generation computers relied on ‘machine language’ (which is the

most fundamental programming language that can be understood by

computers).

• These computers were limited to solving one problem at a time. Input was

predicated on punched cards and paper tape. Output emerged on print-outs.

The two eminent machines of this era were the UNIVAC and ENIAC machines

– the UNIVAC is the first ever commercial computer which was purchased in

1951 by a business named as the US Census Bureau.

Second Generation – Transistors (1956 – 1963)

• Transistor first invented in 1947, transistors weren’t used considerably in

computers until the cessation of the 1950s.

• They were a huge development over the vacuum tube.

• They were extremely superior to the vacuum tubes, making computers

smaller, more expeditious, inexpensive and less burdensome on electricity

use.

• The language emerged from strange binary language to symbolic

(‘assembly’) languages. This meant programmers could discover instructions

in words. Meanwhile during the same time high calibre programming

languages were being developed (early versions of COBOL and FORTRAN).

Third Generation – Integrated Circuits (1964 – 1971)

• These were the first computers where users interacted utilizing keyboards

and monitors which interfaced with an operating system, a consequential

leap up from the punch cards and printouts.

• This facilitated these machines to run various applications at once utilizing

a central program which functioned to monitor memory. As a result of these

advances which again made machines more reasonable and tinier, a brand-

new group of users emerged during the ‘60s.

Fourth Generation – Microprocessors (1972 – 2010)

• This innovation can be defined in one word: Intel. The chip-maker

accomplished the Intel 4004 chip in 1971, which located all components of

computer such as CPU, recollection, input/output controls onto a single

chip.

• The Intel chip contained thousands of unified circuits.

• The year 1981 saw the first ever computer (IBM) categorically designed for

home use and 1984 saw the Macintosh introduced by Apple.

• The incremented power of these small computers denoted they could be

linked, establishing networks. Other primary advances during this period

have been the Graphical user interface (GUI), the mouse and more of late

the startling advances in laptop capability and hand-held contrivances.

Fifth Generation – Artificial Intelligence (2010 Onwards)

• Computer devices with artificial potentiality are still in development, but

some of these technologies are commencing to emerge and be used such as

voice recognition.

• AI is an authenticity, made possible by adopting parallel processing and

superconductors.

• Inclining to the future, computers will be thoroughly revolutionized again by

quantum computation, molecular and nano technology. The essence of fifth

generation will be utilizing these technologies to ultimately engender

machines which can proceed and acknowledge natural language, and have

efficiency to determine and organise themselves.

1.4.CLASSIFICATION OF COMPUTERS

The computer systems can be classified on the following basis.

Classification on the basis of data handling:

Analog:

• An analog computer is a form of computer that uses the continuously-

changeable aspects of physical fact such as electrical, mechanical, or

hydraulic quantities to model the problem being solved.

• Anything that is variable with respect to time and continuous can be claimed

as analog just like an analog clock measures time by means of the distance

travelled for the spokes of the clock around the circular dial.

Digital:

• A computer that performs calculations and logical operations with quantities

represented as digits, usually in the binary number system of “0” and “1”,

Computer capable of solving problems by processing information expressed

in discrete form.

• From manipulation of the combinations of the binary digits, it can perform

mathematical calculations, organize and analyze data, control industrial and

other processes, and simulate dynamic systems such as global weather

patterns.

Hybrid:

• A computer that processes both analog and digital data, Hybrid computer is

a digital computer that accepts analog signals, converts them to digital and

processes them in digital form.

Classification on the basis of size:

Super Computers:

• The super computers are the highest performing system.

• A supercomputer is a computer with a high level of performance compared

to a general-purpose computer.

• The actual Performance of a supercomputer is measured in FLOPS instead of

MIPS.

• All of the world’s fastest 500 supercomputers run Linux-based operating

systems.

• Additional research is being conducted in China, the US, the EU, Taiwan and

Japan to build even faster, higher performing and more technologically

superior supercomputers.

• Supercomputers actually play an important role in the field of computation,

and are used for intensive computation tasks in various fields, including

quantum mechanics, weather forecasting, climate research, oil and gas

exploration, molecular modelling, and physical simulations.

Eg: PARAM, jaguar, roadrunner.

Mainframe Computers:

• These are commonly called as big iron, they are usually used by big

organisations for bulk data processing such as statics, census data

processing, transaction processing and are widely used as the severs as these

systems has a higher processing capability as compared to the other classes

of computers, most of these mainframe architectures were established in

1960s, the research and development worked continuously over the years

and the mainframes of today are far more better than the earlier ones, in

size, capacity and efficiency.

Eg: IBM z Series, System z9 and System z10 servers.

Mini computers:

• These computers came into the market in mid 1960s and were sold at a

much cheaper price than the main frames, they were actually designed for

control, instrumentation, human interaction, and communication switching

as distinct from calculation and record keeping, later they became very

popular for personal uses with evolution.

• In the 60s to describe the smaller computers that became possible with the

use of transistors and core memory technologies, minimal instruction sets

and less expensive peripherals such as the ubiquitous Teletype Model 33 ASR.

• They usually took up one or a few inch rack cabinets, compared with the

large mainframes that could fill a room, there was a new term

“MINICOMPUTERS” coined

Eg: Personal Laptop, PC etc.

Micro Computers:

• A microcomputer is a small, relatively inexpensive computer with a

microprocessor as its CPU.

• It includes a microprocessor, memory, and minimal I/O circuitry mounted on

a single printed circuit board.

• The previous to these computers, mainframes and minicomputers, were

comparatively much larger, hard to maintain and more expensive.

• They actually formed the foundation for present day microcomputers and

smart gadgets that we use in day to day life.

Eg: Tablets, Smartwatches.

Classification on the basis of functionality:

Servers: Servers are nothing but dedicated computers which are set-up to offer

some services to the clients. They are named depending on the type of service

they offered.

Eg: security server, database server.

Workstation: Those are the computers designed to primarily to be used by single

user at a time. They run multi-user operating systems. They are the ones which

we use for our day to day personal / commercial work.

Information Appliances:

• They are the portable devices which are designed to perform a limited set of

tasks like basic calculations, playing multimedia, browsing internet etc.

• They are generally referred as the mobile devices.

• They have very limited memory and flexibility and generally run on “as-is”

basis.

Embedded Computers:

• They are the computing devices which are used in other machines to serve

limited set of requirements. They follow instructions from the non-volatile

memory and they are not required to execute reboot or reset.

• The processing units used in such device work to those basic requirements

only and are different from the ones that are used in personal computers-

better known as workstations.

1.5 BASIC ORGANIZATION OF A COMPUTER SYSTEM

• Any computer can perform the four basic operations of Input, Processing,

Output, and Storage (IPOS).

• These operations constitute the IPOS cycle.

• The internal design or structure of a computer may differ from one system

to another though the basic operations remain the same.

• The figure displays all the functional units of a computer which carry out the

basic computer operations.

• The lines in the figure indicate the flow of instructions and data, while the

Control Unit and the Arithmetic/Logical Unit together direct the flow of

control in the central processing unit.

Input Unit:

• Data and instructions are entered into the computer through the input unit

to get processed into information.

• Input devices like the keyboard, the mouse, or the microphone are used to

enter the data.

• The data is entered in various forms depending on the type of input devices.

For instance, a keyboard can be used to input characters, numbers, and

certain symbols; a mouse is a device that has an on-screen pointer that

enables the users to select items and choose options; a microphone can be

used if the user wishes to enter instructions by making a voice entry.

• Regardless of the ways in which the input devices receive the inputs, the

input interfaces convert them into binary codes, i.e., 0s and 1s, as the

primary memory of the computer is designed to accept data only in this

format. Several advancements can be seen in input devices with devices like

cordless keyboards, optical mouse, laser mouse, cordless mouse, etc., being

introduced in the market.

Central Processing Unit:

The actual processing of the data is carried out in the Central Processing Unit

(CPU), which is the brain of computer. The CPU stores the data and instructions in

the primary memory of the computer, called the Random Access Memory (RAM)

and processes them from this location. The Arithmetic Logic Unit (ALU) and the

Control Unit (CU) are the two subcomponents of the CPU. The ALU carries out the

arithmetic and logical operations while the CU retrieves the information from the

storage unit and interprets this information. The CPU also consists of circuitry

devices called cache and registers.

Arithmetic Logic Unit:

The data and instructions stored in the RAM are transferred to the ALU for

processing. The ALU performs the logical and the arithmetic operations on the

data and the results are temporarily stored in the RAM. After the processing, the

final results are stored in the secondary memory, i.e., the storage unit, and are

released through an output device.

Control Unit:

The CU obtains the program instructions stored in the primary memory of the

computer, interprets them, and issues signals that result in their execution. It

helps in maintaining order and directs the operations of the entire system. It

selects, interprets, and ensures the proper execution of the program instructions.

Processors:

Some computers use more than one processor for processing in order to reduce

the load on a single processor.

Output Unit:

The output unit passes on the final results of computation to the users through the

output devices like the monitor, printer, etc. A monitor displays the final results

of the processed data on the screen while a printer can be used for obtaining the

output in a printed format. These output devices link the computer with the

users. The output interfaces convert the binary code produced by the computer

into the human-readable form.

Storage Unit:

Before the actual processing takes place, the data and instructions that enter the

computer system have to be stored internally. Also, the final results generated by

the computer after processing has to be stored before being sent to the output

unit. The storage unit of a computer system is designed to store the data

generated at various stages of processing. Storage media like hard disks, floppy

disks, etc., aid in storing the data in various forms. The hard disk is an integral

part of the computer system. It is also referred to as hard drive, disk drive, or

hard disk drive. The hard disk provides a large amount of storage space for the

programs and data. Computers these days feature a hard disk that has several

gigabytes of storage capacity. The floppy disk drives, CD-ROM/CD-RW drives, DVD

drives, and USB ports enable the user to store and exchange data with others using

storage media like floppy disks, compact discs (CDs), digital video discs (DVDs),

and pen drives.

1.6 Input and output devices

• Input—keyboard,mouse joystick, touchpad , touchscreen, scanner

MICR,OMR etc

• Output- Monitor, Printers, projectoretc

1.7 CLASSIFICATION OF COMPUTER MEMORY

• Computer memory is a generic term for all of the different types of data

storage technology that a computer may use, including RAM, ROM, and flash

memory.

• Some types of computer memory are designed to be very fast, meaning that

the central processing unit (CPU) can access data stored there very quickly.

• Other types are designed to be very low cost, so that large amounts of data

can be stored there economically.Another way that computer memory can

vary is that some types are non-volatile, which means they can store data on

a long-term basis even when there is no power. And some types are volatile,

which are often faster, but which lose all the data stored on them as soon as

the power is switched off.

• A computer system is built using a combination of these types of computer

memory, and the exact configuration can be optimized to produce the

maximum data processing speed or the minimum cost, or some compromise

between the two.

Types of Computer Memory: Primary and Secondary

Although many types of memory in a computer exist, the most basic distinction is

between primary memory, often called system memory, and secondary memory,

which is more commonly called storage.The key difference between primary and

secondary memory is speed of access.

Primary memory includes ROM and RAM, and is located close to the CPU on the

computer motherboard, enabling the CPU to read data from primary memory very

quickly indeed. It is used to store data that the CPU needs imminently so that it

does not have to wait for it to be delivered.

Secondary memory by contrast, is usually physically located within a separate

storage device, such as a Hard Disk Drive (HDD)or Solid State Drive (SSD), which is

connected to the computer system either directly or over a network. The cost per

gigabyte of secondary memory is much lower, but the read and write speeds are

significantly slower.

Primary Memory Types: RAM and ROM

There are two key types of primary memory:

 RAM or Random Access Memory, ROM or ReadOnly Memory

1) RAM Computer Memory

• The acronym RAM stems from the fact that data stored in random access

memory can be accessed – as the name suggests – in any random order. Or,

put another way, any random bit of data can be accessed just as quickly as

any other bit.

• The most important things to understand about RAM are that RAM memory is

very fast, it can be written to as well as read, it is volatile (so all data

stored in RAM memory is lost when it loses power) and, finally, it is very

expensive compared to all types of secondary memory in terms of cost per

gigabyte.

• Data that is required for imminent processing is moved to RAM where it can

be accessed and modified very quickly, so that the CPU is not kept waiting.

Types of RAM

DRAM: DRAM stands for Dynamic RAM, and it is the most common type of RAM

used in computers. The oldest type is known as single data rate (SDR) DRAM, but

newer computers use faster dual data rate (DDR) DRAM. DDR comes in several

versions including DDR2, DDR3, and DDR4, which offer better performance and are

more energy efficient than DDR.

SRAM: SRAM stands for Static RAM, and it is a particular type of RAM which is

faster than DRAM, but more expensive and bulker, having six transistors in each

cell. For those reasons SRAM is generally only used as a data cache within a CPU

itself or as RAM in very high-end server systems.

2) ROM Computer Memory

• ROM stands for read-only memory, and the name stems from the fact that

while data can be read from this type of computer memory, data cannot

normally be written to it.

• It is a very fast type of computer memory which is usually installed close to

the CPU on the motherboard.

• ROM is a type of non-volatile memory, which means that the data stored in

ROM persists in the memory even when it receives no power – for example

when the computer is turned off.

• In that sense it is similar to secondary memory, which is used for long term

storage.

• When a computer is turned on, the CPU can begin reading information stored

in ROM without the need for drivers or other complex software to help it

communicate.

• The ROM usually contains "bootstrap code" which is the basic set of

instructions a computer needs to carry out to become aware of the

operating system stored in secondary memory, and to load parts of the

operating system into primary memory so that it can start up and become

ready to use.

• ROM is also used in simpler electronic devices to store firmware which runs

as soon as the device is switched on.

Types of ROM

ROM is available in several different types, including PROM, EPROM, and EEPROM.

• PROM: PROM stands for Programmable Read-Only Memory, and it is different

from true ROM in that while a ROM is programmed (i.e. has data written to it)

during the manufacturing process, a PROM is manufactured in an empty state and

then programmed later using a PROM programmer or burner.

• EPROM: EPROM stands for Erasable Programmable Read-Only Memory, and as

the name suggests, data stored in an EPROM can be erased and the EPROM

reprogrammed. Erasing an EPROM involves removing it from the computer and

exposing it to ultraviolet light before re-burning it.

• EEPROM: EEPROM stands for Electrically Erasable Programmable Read-Only

Memory, and the distinction between EPROM and EEPROM is that the latter can be

erased and written to by the computer system it is installed in. In that sense

EEPROM is not strictly read-only. However, in many cases the write process is

slow, so it is normally only done to update program code such as firmware or BIOS

code on an occasional basis.

Secondary Memory Types

Secondary memory comprises many different storage media which can be directly

attached to a computer system. These include:

 Hard Disk Drives (HDD), Solid State Drives (SSD),

 Optical (CD or DVD), Drives, Tape drives

Differences between RAM and ROM

ROM RAM

• Non-volatile.

• Fast to read.

• Usually used in small quantities.

• Cannot be written too quickly.

• Used to store boot instructions or

firmware.

• Relatively expensive per megabyte

stored compared to RAM.

• Volatile.

• Fast to read and write.

• Used as system memory to store data

(including program code) that the CPU needs to

process imminently.

• Relatively cheap per megabyte stored

compared to ROM, but relatively expensive

compared to secondary memory.

Short Questions

1. What is computer?

2. Write short note

• RAM

• ROM

• Hybrid computer

• CPU

• ALU

• Cache Memory

3. What is primary memory?

4. Define Digital Computer.

5. Different between RAM and ROM.

6. What is secondary memory?

Long Questions

1. What is computer?what are it’s characteristics.

2. Explain the classification of computer.

3. What is computer? Explain any five major area of

application of computer.

4. Discuss the basic organization of the computer with

diagram.

5. Discuss about the input devices and out put devices

of the computer.

6. Explain all the generation and key features about

the generation.

CH-2 COMPUTER SOFTWARE

2.1 CLASSIFICATION OF SOFTWARE

The following diagram shows the way we classify software.

2.2 System Software

We use the term System Software for software which is primarily used to operate

the hardware.

Operating Systems:

• The operating system is the software that allows you to operate the

hardware. The programs that we want to execute, the applications that we want

to use all require a platform on which to execute. That platform is provided by

the operating system.

Utility Programs:

• Some utility programs are bundled in with operating system software these

days.

• Utility programs tend to perform specific tasks related to the management

of hardware.

• Examples of utility programs include compression programs, formatters,

defragmenters and other disk management tools.

Library Programs:

• Library programs are compiled libraries of commonly-used routinesLanguage

Translators:

There are 3 main categories of translator used.

• Assembler: An assembler is a program that translates the mnemonic codes

used in assembly language into the bit patterns that represent machine

operations.

• Assembly language has a one-to-one equivalence with machine code, each

assembly statement can be converted into a single machine operation.

• Compiler: A compiler turns the source code that you write in a high-level

language into object code (machine code) that can be executed by the computer.

• The compiler is a more complex beast than the assembler. It may require

several machine operations to represent a single high-level language statement.

As a result, compiling may well be a lengthy process with very large programs.

• Interpreter: Interpreters translate the source code at run-time. The

interpreter translates statements one-at-a-time as the program is

executed.Interpreters are often used to execute high-level language programs

whilst they are being developed since this can be quicker than compiling the

entire program.

• The program would be compiled when it is complete and ready to be

released.

• Interpreters are also used with high-level scripting languages like PHP,

JavaScript and many more.

• These instructions are not compiled and have to be interpreted either by

the browser (in the case of JavaScript) or by interpreters on the server (in the

case of PHP).

2.3 Application Software

• Application software tends be used for the tasks that have some relationship

to the world outside of the computer.

• For example, you might use a word processor to write a letter or an essay.

General-Purpose Software:

Software is general-purpose if it can be used for lots of different tasks. You can

use a word processor to write letters, memos, essays, instructions, notes, faxes,

invoices and lots more.

Special-Purpose Software:

• This software performs a single specific task.

• This task might be complex like payroll calculation, stock control etc. but

will be based on a single task.

• These days, web browsers can contain a lot of features.

• They are still primarily focused on a single task, rendering web pages and so

the web browser is special-purpose.

2.4 OPERATING SYSTEM OBJECTIVES AND FUNCTIONS:

• An Operating System exploits the hardware resources of one or

moreprocessors to provide a set of services to system users.

• The OS also managessecondary memory and I/O devices on behalf of

its users. So, it is necessary to havesome understanding some of computer system

hardware.

• An OS is a program that controls the execution of application programs

andacts as an interface between applications and the computer hardware. It can

bethought of as having three objectives:

• Convenience: An OS makes a computer more convenient to use.

• Efficiency: An OS allows the computer system resources to be used in

anefficient manner.

• Ability to evolve: An OS should be constructed in such a way as to permit

theeffective development, testing, and introduction of new system functions

withoutinterfering with service.

OS typically provides services in the following areas:

• Program development: The OS provides a variety of facilities and

services,such as editors and debuggers, to assist the programmer in creating

programs.

• Program execution: A number of steps need to be performed to execute

aprogram.Instructions and data must be loaded into main memory, I/O

devicesand files must be initialized, and other resources must be prepared.

• Access to I/O devices: Each I/O device requires its own peculiar set

ofinstructions or control signals for operation.

• Controlled access to files: For file access, the OS must reflect a

detailedunderstanding of not only the nature of the I/O device (disk drive,

tape drive) butalso the structure of the data contained in the files on the

storage medium.

• System access: For shared or public systems, the OS controls access to the

system as a whole and to specific system resources. The access function must

provide protection of resources and data from unauthorized users and must

resolve conflicts for resource contention.

• Error detection and response: A variety of errors can occur while a computer

system is running.

• Accounting: A good OS will collect usage statistics for various resources

andmonitor performance parameters such as response time.

Operating System as a Resource Manager:

• A computer is a set of resources for the movement, storage, and

processingof data and for the control of these functions.

• The OS is responsible for managingthese resourcesThe OS functions in the

same way as ordinary computer software; that is, it is aprogram or suite of

programs executed by the processor.

• The OS frequently relinquishes control and must depend on the processor

toallow it to regain control.

2.6 TYPES OF OPERATING SYSTEMS

1. Batch Operating System: This type of operating system does not interact

with the computer

directly. There is an

operator which takes

similar jobs having same

requirement and group

them into batches. It is

the responsibility of

operator to sort the jobs

with similar needs.

Advantages of Batch Operating System:

• It is very difficult to guess or know the time required by any job to complete.

Processors of the batch systems know how long the job would be when it is in

queue.

• Multiple users can share the batch systems.

• The idle time for batch system is very less.

• It is easy to manage large work repeatedly in batch systems.

Disadvantages of Batch Operating System:

• The computer operators should be well known with batch systems.

• Batch systems are hard to debug.

• It is sometime costly.

• The other jobs will have to wait for an unknown time if any job fails.

Examples of Batch based Operating System:Payroll System, Bank Statements etc.

2. Time-Sharing Operating Systems:Each task is given some time to

execute, so that all the tasks

work smoothly. Each user gets

time of CPU as they use single

system. These systems are also

known as Multitasking Systems.

The task can be from single

user or from different users

also. The time that each task

gets to execute is called quantum. After this time interval is over OS switches over

to next task.

Advantages of Time-Sharing OS:

• Each task gets an equal opportunity.

• Less chances of duplication of software.

• CPU idle time can be reduced.

Disadvantages of Time-Sharing OS:

• Reliability problem.

• One must have to take care of

security and integrity of user

programs and data.

• Data communication problem.

Examples of Time-Sharing OSs are:

Multics, Unix etc.

3. Distributed Operating

System:These types of operating

system is a recent advancement in the world of computer technology and are

being widely accepted all-over the world and, that too, with a great pace. Various

autonomous interconnected computers communicate each other using a shared

communication network. Independent systems possess their own memory unit and

CPU. These are referred as loosely coupled systems or distributed systems. These

system’s processors differ in size and function. The major benefit of working with

these types of operating system is that it is always possible that one user can

access the files or software which are not actually present on his system but on

some other system connected within this network i.e., remote access is enabled

within the devices connected in that network.

Advantages of Distributed Operating System:

• Failure of one will not affect the other network communication, as all systems

are independent from each other.

• Electronic mail increases the data exchange speed.

• Since resources are being shared, computation is highly fast and durable.

• Load on host computer reduces.

• These systems are easily scalable as many systems can be easily added to the

network.

• Delay in data processing reduces.

Disadvantages of Distributed Operating System:

• Failure of the main network will stop the entire communication.

• To establish distributed systems the language which are used are not well

defined yet.

• These types of systems are not readily available as they are very expensive.

Not only that the underlying software is highly complex and not understood

well yet.

Examples of Distributed Operating System are: LOCUS etc.

4. Multiprogramming Operating Systems:

• In this the operating system picks up and begins to

execute one of the jobs from memory.Once this job

needs an I/O operation operating system switches to

another job (CPU and OS always busy).Jobs in the

memory are always less than the number of jobs on

disk(Job Pool).If several jobs are ready to run at the

same time, then the system chooses which one to run

through the process of CPU Scheduling.

5. Multiprocessor Systems:A Multiprocessor system

consists of several processors that share a common

physical memory. Multiprocessor system provides higher computing power and

speed. In multiprocessor system all processors operate under single operating

system. Multiplicity of the processors and how they do act together are

transparent to the others.

Advantages of Multiprocessor Systems:

• Enhanced performance.

• Execution of several tasks by different processors concurrently, increases the

system's throughput without speeding up the execution of a single task.

• If possible, system divides task into many subtasks and then these subtasks

can be executed in parallel in different processors. Thereby speeding up the

execution of single tasks.

6. Real Time operating System:

• A real-time system is defined as a data processing system in which the time

interval required to process and respond to inputs is so small that it controls the

environment.

• The time taken by the system to respond to an input and display of required

updated information is termed as the response time. So, in this method, the

response time is very less as compared to online processing.

• Real-time systems are used when there are rigid time requirements on the

operation of a processor or the flow of data and real-time systems can be used as

a control device in a dedicated application.

• A real-time operating system must have well-defined, fixed time

constraints, otherwise the system will fail. For example, Scientific experiments,

medical imaging systems, industrial control systems, weapon systems, robots, air

traffic control systems, etc.

OPERATING SYSTEM COMPARISON

• An operating system or OS, is a fundamental component of a computer

system that manages activities and resources on the machine.

• As a host application, it handles the operations of hardware devices which

makes it easy for the associated programs to function.

• Nearly every computer including desktops, laptops, supercomputers, hand-

held and even video game consoles use some type of operating system.

Comparison Chart:

BASIS FOR

COMPARISON
LINUX WINDOWS

Cost Free of cost Expensive

Open source Yes No

Customizable Yes No

Security More secure
Vulnerable to viruses and

malware attacks.

Booting Either primary or logical Only primary partition.

partition.

Separation of the

directories using
Forward slash Back slash

File names Case sensitive Case insensitive

File system
EXT2, EXT3, EXT4, Reisers FS,

XFS and JFS
FAT, FAT32, NTFS and ReFS

Type of kernel

used
Monolithic kernel Microkernel

Efficiency Effective running efficiency Lower than Linux

COMPUTER VIRUSES

A computer virus is a malware program that is written intentionally to gain access

to a computer without its owner’s permission.

 These kinds of programs are primarily written to steal or destroy computer

data. Most systems catch viruses due to program bugs, the vulnerability of

operating systems, and poor security practices.

Types of Computer Viruses:

1. Boot Sector Virus:Boot Sector virus infects the storage device’s master boot

record (MBR). Any media, whether it is bootable or not can trigger this virus.

These viruses inject their code to hard disk’s partition table. It then gets into the

main memory once the computer restarts.Booting problems, unstable system

performance and inability to locate hard disk are common issues that may arise

after getting infected. However, it has become rare since the decline in floppy

disks. Modern operating systems come with an inbuilt boot sector safeguard which

makes it difficult to find the MBR.

Can affect: Any file after getting into the main memory

Examples: Form, Disk Killer, Stone virus, Polyboot.B

Protection: Make sure that the disk you are using is write-protected. Do not

start/restart the computer with unknown external disks connected.

2. Direct Action Virus:This virus quickly gets into the main memory, infects all

programs/files/folder defined in Autoexec.bat path and then deletes itself. It can

also destroy the data present in harddisk or USB attached to the computer.

While these viruses are found in hard disk’s root directory, they are capable of

changing location on every execution. In most cases, they don’t delete system

files but alter the system’s overall performance.

Can affect: All .exe and .com file extension

Example: VCL.428, created by the Virus Construction Laboratory

Protection: Use antivirus scanner. Direct action virus is easy to detect and all

infected files can be restored completely.

3. Overwrite Virus:Overwrite viruses are very dangerous. They have affected a

wide range of operating system including Windows, DOS, Macintosh, and Linux.

They simply delete the data (partially or completely) and replace the old code

with their own.They replace the file content without changing its size. It is easy to

detect as the original program stops working. Once the file gets infected, it can’t

be restored and you will end up losing all data.

Can affect: Any file

Examples: Grog.377, Grog.202/456, Way, Loveletter

Protection: The only way to get rid of this virus is to delete all the infected files,

so it’s better to keep your antivirus program updated, especially if you are using

Windows.

4. Web Scripting Virus:A web scripting virus breaches web browser security and

allows attackers to inject client-side scripting into the web page. They propagate

quite faster than other conventional viruses.It is used to attack large sites like

social networking, user review or email. It has the potential to send a large

amount of spam, fraud activity, and damage files on sever.

Can affect: Any web page by injecting hidden code in header, footer or root

access file.

Examples:DDos, JS.fornight

Protection: Use malicious software removal tool in Windows, disable scripts, use

cookie security or install real-time protection software for the web browser.

5. Directory Virus:Directory Virus (also known as Cluster virus) infects the file by

changing the DOS directory information. In this case, DOS points to the virus code

rather than pointing to the original program.When you run a program, DOS first

loads and executes the virus code before running the actual program code. It

becomes very difficult to locate the original file after getting infected.

Can affect: The entire program in the directory

Example: Dir-2

Protection: Install the antivirus to relocate the misplaced files.

6. Polymorphic Virus:The polymorphic virus encodes themselves using different

encryption keys and algorithms each time they infect a program or create a copy

of itself. Because of different encryption keys, it becomes very difficult for the

antivirus software to find them. In other words, it is a self-encrypted virus which

is designed to avoid detection by scanners.

Can affect: Any file

Examples: Whale, Simile, SMEG engine, 1260

Protection: Install advanced, high-end antivirus

7. Memory Resident Virus:These viruses live in primary memory (RAM) and get

activated whenever you switch on the computer. They affect all files currently

running on the desktop. Basically, it allocates memory, blocks original scripts, and

runs its own code when any program is executed.

Can affect: Any file running on PC and files that are being copied or renamed.

Examples:Randex, Meve, CMJ

Protection: Install strong antivirus software

8. Macro Virus:There are a few software such as a word processor that allows a

macro program to embed in documents. This virus is written in the macro

language, so it may run automatically when the document is opened and it can

easily spread to other files too.It depends on the application rather than the

operating system. They are generally hidden in documents that are more likely

shared via email.

Can affect: .mdb, .PPS, .Doc, .XLs files

Examples:Bablas, Concept and Melissa virus

Protection: Disable macros and don’t open emails from unknown sources.

Alternatively, you can install modern antivirus software that can detect macro

virus easily.

9. Companion Virus:Companion Viruses were more popular during the MS-DOS

era. Unlike traditional viruses, they do not modify the existing file. It creates a

copy of a file with a different extension (usually .com) which runs in parallel with

the actual program.For example, if there is a file named abc.exe, this virus will

create another hidden file named abc.com. And when the system calls a file ‘abc’,

the .com (higher priority extension) runs before the .exe extension. It can perform

malicious steps such as deleting the original files.

Can affect: All .exe files

Examples: Stator, Terrax.1096

Protection: Can be easily detected because of the presence of additional .com

file. Install reliable antivirus software and avoid downloading attachments of

unsolicited emails.

10. Multipartite virus:The Multipartite virus infects and spreads in multiple ways

depending on the operating system. They usually stay in memory and infect the

hard disk.Once it gets into the system, it infects all drives by altering applications’

content. You will soon start noticing performance lag and low virtual memory

available for user applications.

Can affect: Files and boot sector

Examples:Ghostball, Invader

Protection: Clean boot sector and entire disk before reloading the data. Do not

open attachments from a non-trusted internet source and install quality antivirus

software.

11. FAT Virus:FAT stands for file allocation table which is a section of storage

disk that is used to store information, such as the location of all files, total

storage capacity, available space, used space etc. A FAT virus alters the index and

makes it impossible for the computer to allocate the file. It is powerful enough to

force you to format the whole disk.

Can affect: Any file

Example: The link virus

Protection: Avoid downloading files from non-trusted sources, especially those

identified as “attack site” by browser or search engine. Use robust antivirus

software.

12. Trojan Horse:Trojan Horse (or Trojan) is a non-replicating type of malware

that looks legitimate. Users are typically tricked into loading and executing it on

the system. It can destroy/modify all the files, crash the computer, modify the

registry, and is strong enough to give hackers remote access to your PC.

Examples:ProRat, ZeroAccess, Beast, Netbus, Zeus

Protection: Use reliable high-end antivirus software and update it regularly.

13. Worm:Worm is a standalone malware program that replicates itself in order to

spread to other computers. It relies on networks (mostly emails) and security

holes to travel from one system to another. Unlike viruses, it overloads the

network by replicating or sending too much data (overusing bandwidth), forcing

the hosts to shut down the server.

Example: Code red, ILOVEYOU, Morris, Nimda, Sober, WANK

Protection: Use antivirus and anti-spyware software.

14. Logic Bombs:They are not a virus but inherently malicious like worms and

viruses. It is a piece of code intentionally inserted (hidden) into a software tool.

This code is executed after certain criteria are met.For example, a cracker can

insert a Keylogger code inside any web browser extension. The code gets activated

whenever you visit a login page and then captures the keystrokes that you entered

while filling your username and passwords. These malicious codes are known as

Logic Bombs.

APPLICATIONS OF DIFFERENT DOMAIN

Business:A computer has high speed of calculation, diligence, accuracy,

reliability, or versatility which has made it an integrated part in all business

organizations.

Computer is used in business organizations for −

• Payroll calculations

• Budgeting

• Sales analysis

• Financial forecasting

• Managing employee database

• Maintenance of stocks, etc.

Banking:Today, banking is almost totally dependent on computers.

Banks provide the following facilities −

• Online accounting facility, which includes checking current balance, making

deposits and overdrafts, checking interest charges, shares, and trustee

records.

• ATM machines which are completely automated are making it even easier for

customers to deal with banks.

Insurance:Insurance companies are keeping all records up-to-date with the help

of computers. Insurance companies, finance houses, and stock broking firms are

widely using computers for their concerns.Insurance companies are maintaining a

database of all clients with information showing −

• Procedure to continue with

policies

• Starting date of the

policies

• Next due instalment of

a policy

• Maturity date

• Interests due

• Survival benefits

• Bonus

Education:The computer helps in providing a lot of facilities in the education

system.

• The computer provides a tool in the education system known as CBE

(Computer Based Education).

• CBE involves control, delivery, and evaluation of learning.

• Computer education is rapidly increasing the graph of number of computer

students.

• There are a number of methods in which educational institutions can use a

computer to educate the students.

• It is used to prepare a database about performance of a student and analysis

is carried out on this basis.

Marketing:In marketing, uses of the computer are following −

• Advertising − With computers, advertising professionals create art and

graphics, write and revise copy, and print and disseminate ads with the goal

of selling more products.

• Home Shopping − Home shopping has been made possible through the use of

computerized catalogues that provide access to product information and

permit direct entry of orders to be filled by the customers.

Healthcare:Computers have become an important part in hospitals, labs, and

dispensaries. They are being used in hospitals to keep the record of patients and

medicines. It is also used in scanning and diagnosing different diseases. ECG, EEG,

ultrasounds and CT scans, etc. are also done by computerized machines.

Following are some major fields of health care in which computers are used-

• Diagnostic System − Computers are used to collect data and identify the cause

of illness.

• Lab-diagnostic System − All tests can be done and the reports are prepared by

computer.

• Patient Monitoring System − These are used to check the patient's signs for

abnormality such as in Cardiac Arrest, ECG, etc.

• Pharma Information System − Computer is used to check drug labels, expiry

dates, harmful side effects, etc.

• Surgery − Nowadays, computers are also used in performing surgery.

Engineering Design:Computers are widely used for Engineering purpose.

One of the major areas is CAD (Computer Aided Design) that provides creation and

modification of images. Some of the fields are −

• Structural Engineering − Requires stress and strain analysis for design of ships,

buildings, budgets, airplanes, etc.

• Industrial Engineering − Computers deal with design, implementation, and

improvement of integrated systems of people, materials, and equipment.

• Architectural Engineering − Computers help in planning towns, designing

buildings, determining a range of buildings on a site using both 2D and 3D

drawings.

Military:Computers are largely used in defence. Modern tanks, missiles,

weapons, etc. Military also employs computerized control systems. Some military

areas where a computer has been used are −

• Missile Control

• Military Communication

• Military Operation and Planning

• Smart Weapons

Communication:Communication is a way to convey a message, an idea, a

picture, or speech that is received and understood clearly and correctly by the

person for whom it is meant. Some main areas in this category are −

• E-mail

• Chatting

• Usenet

• FTP

• Telnet

• Video-conferencing

Government:Computers play an important role in government services. Some

major fields in this category are −

• Budgets

• Sales tax department

• Income tax department

• Computation of male/female

ratio

• Computerization of voters’ lists

• Weather forecasting

Short Questions

1. What is FTP?

2. What is Software?

3. What is viruses?

4. What is system software?

5. Define OS.

6. Define DOS.

Write Short note

• Compiler

• Interpreter

• Programming language

• Application software

• Windows

Long Questions

1. Explain different types of OS, and

discuss about the batch process Operating system.

2. Difference between compiler and

interpreter.

3. What is Computer virus ? Discuss the

different computer viruses.

4. Discuss the prevention and

protectioncomputer virus.

CH-3 COMPUTER NETWORK & INTERNET

NETWORKING CONCEPTS

A computer networkconsists of two or more computers that are linked in order to

share resources such as printers, exchange files and allow communication.The size

of computer networks may vary. The Internet is an example of a computer

network that spreads all across the world. The Internet is also referred to as the

worldwide network of computers and it is growing at a rapid rate.

Need for computer networks:Nowadays, computer networks are a vital part

of any organisation. Some of the advantages of computer networks are:

Resource Sharing: All computers in a network can share resources such as

printers, fax machines, modems and scanners.

File Sharing and Remote Database Access: A computer network allows sharing of

files and access to remote database. We can easily access the files stored on

various computers on a network. Also, networking allows many people to work

simultaneously on the data stored in a database.

Ease of Communication: Computer networks allow people to communicate

through emails and instant messaging facilities. This makes the transmission of

information easier, more efficient and less expensive.

CONNECTING MEDIA

Computers must be connected to each other to form a network. Computers can be

connected using wires/cables or they can be connected in a wireless manner.

Wired Transmission Media:There are various types of cables that can be used

for setting up a network. Some of them are discussedhere.

• Twisted Pair Cable: It consists of a pair of

insulated wires twisted together. The use of

two wirestwisted around each other helps to

reduce disturbances in the signals.The twisted

pair cable is often used in two or more pairs, all

within a single cable. Twisted pair cablingcomes

in two varieties—shielded (Shielded Twisted

Pair or STP) and unshielded (Unshielded

TwistedPair or UTP). UTP cable is the most

commonly used cable in computer

networking.The twisted pair cable is often used

in two or more pairs, all within a single cable.

Twisted pair cablingcomes in two varieties—

shielded (Shielded Twisted Pair or STP) and

unshielded (Unshielded TwistedPair or UTP).

UTP cable is the most commonly used cable in

computer networking.

• Coaxial Cable (coax): Coaxial cable is

an electrical cable with a conductor at

its centre. The inner conductor is

surrounded by a tubular insulating

layer. The insulating layer is

surrounded by a conductive layer

called the shield, which is finally

covered with a thin insulating layer on

the outside.

• Optical Fibre Cable: Optical fibre cable consists of a central glass core

surrounded by several layers of protective material.

It transmits data in the form of light rather than

electronic signals, thus eliminating the problem of

electrical interference. Fibre optic cable is

expensive as compared to coaxial and twisted pair

cables but can transmit signals over much longer

distances. It also has the capability to carry data at a

very high speed.

Wireless Transmission Media: In wireless networks, data is transmitted

without wires. Some of the ways in which wireless networks may be set up are as

follows.

• Infrared: The infrared communication range of the

devices communicating through infrared waves is

very limited. Infrared waves cannot penetrate walls

or other obstructions and so there should be no

physical barrier between the communicating devices.

The communication between a TV set and a remote

control happens through infrared waves. Infrared

mouse and keyboard are other examples of devices

that make use of infrared waves for data transmission.

• Microwave Transmission: Microwave communications are

unidirectional. They can be used for terrestrial

communication (on ‘the surface of the earth) or for satellite

communication. Microwave propagation is line-of-sight

communication. So, when used for terrestrial

communication, the towers with antennas mounted on them

need to be in direct sight of each other. The antennas are

usually located at substantial heights above the ground level

to extend the range between antennas and to be able to

transmit over obstacles. You must have noticed high towers with microwave

antennas in your city.Microwaves can pass through the earth’s atmosphere

easily and can be used to transmit information between satellites and the

earth’s base station.

• Radio-wave Transmission: Radio-wave communications are

omnidirectional, which means that they travel in all

directions from the source, so that the transmitter and

receiver do not have to be carefully aligned physically.

Radio waves are easy to generate, can travel long distances

and penetrate through buildings easily. So, they are widely

used for communication both indoors and outdoors.

However, at all frequencies, radio waves are subject to

interference from motors and other electrical equipment.

• Bluetooth technology: is used for exchanging data over short

distances using radio waves. This technology uses low power, has a

short range (30 feetapprox) and medium transmission speed.

Bluetooth technology can be used to transfer songs or pictures

between two mobile phones or a Bluetooth headset can be used with a mobile

phone.

• Wi-Fi technology: also makes use of radio waves to transmit

and receive data. This technology requires more energy but

enables the signal to go farther (300 feet approx.) with a

faster rate of transmission. This technology is used to set up

networks in which a computer’s wireless adapter translates

the data into a radio signal and transmits it. A wireless router receives the

signal, decodes it and sends it to the Internet using a wired connection.

TRANSMISSION MODES IN COMPUTER NETWORKS

Transmission mode means transferring of data between two devices. It is also

known as communication mode. Buses and networks are designed to allow

communication to occur

between individual devices that

are interconnected. There are

three types of transmission

mode:-

• Simplex Mode

• Half-Duplex Mode

• Full-Duplex Mode

Simplex Mode: In Simplex mode, the communication is unidirectional, as on a

one-way street. Only one of the two devices

on a link can transmit, the other can only

receive. The simplex mode can use the entire

capacity of the channel to send data in one

direction.

Example: Keyboard and traditional monitors. The keyboard can only introduce

input, the monitor can only give the output.

Half-Duplex Mode: In half-duplex

mode, each station can both transmit

and receive, but not at the same time.

When one device is sending, the other

can only receive, and vice versa. The

half-duplex mode is used in cases where

there is no need for communication in

both direction at the same time. The

entire capacity of the channel can be

utilized for each direction.

Example: Walkie- talkie in which

message is sent one at a time and messages are sent in both the directions.

Full-Duplex Mode:In full-duplex mode, both stations can transmit and receive

simultaneously. In full-duplex mode, signals

going in one direction share the capacity of

the link with signals going in other

direction, this sharing can occur in two

ways:

• Either the link must contain two physically separate transmission paths, one

for sending and other for receiving.

• Or the capacity is divided between signals travelling in both directions.

Full-duplex mode is used when communication in both direction is required all the

time. The capacity of the channel, however must be divided between the two

directions.

Example: Telephone Network in which there is communication between two

persons by a telephone line, through which both can talk and listen at the same

time.

PROTOCOLS

Just the way we follow certain rules while communicating or travelling on the

road, similarly rules or protocols have to be followed for effective network

communication. Protocol is a set of rules used by computers on a network to

communicate with each other. Some examples of protocols are:

HTTP (Hyper Text Transfer Protocol): It is a protocol used between a web

server and a web browser for transferring HTML pages.

TCP/IP (Transmission Control Protocol/Internet Protocol): TCP is a protocol that

is used along with the IP to send data over the Internet. The information is

transmitted across the Internet in the form of bundles called TCP is responsible

for dividing the data into packets before they are sent and for reassembling the

packets when they arrive at the destination. IP is a set of specifications that

determines the best route for the packets across the Internet so that the packets

reach their destination address.

NETWORK TOPOLOGY

Network Topology is the schematic description of a network arrangement,

connecting various nodes(sender and receiver) through lines of connection.

1. BUS Topology:Bus topology is a network type in which every computer and

network device is

connected to a single

cable. When it has

exactly two endpoints,

then it is called Linear

Bus topology.

Features of Bus Topology:

• It transmits data only in one

direction.

• Every device is connected to a

single cable

Advantages of Bus Topology:

• It is cost effective.

• Cable required is least compared to

other network topology.

• Used in small networks.

• It is easy to understand.

• Easy to expand joining two cables

together.

Disadvantages of Bus Topology:

• Cables fails then whole network

fails.

• If network traffic is heavy or nodes

are more the performance of the

network decreases.

• Cable has a limited length.

• It is slower than the ring topology.

2. RING Topology:It is called ring topology

because it forms a ring as each computer is

connected to another computer, with the last

one connected to the first. Exactly two

neighbours for each device.

Features of Ring Topology:

• A number of repeaters are used for Ring

topology with large number of nodes, because if someone wants to send some

data to the last node in the ring topology with 100 nodes, then the data will

have to pass through 99 nodes to reach the 100th node. Hence to prevent data

loss repeaters are used in the network.

• The transmission is unidirectional, but it can be made bidirectional by having

2 connections between each Network Node, it is called Dual Ring Topology.

• In Dual Ring Topology, two ring networks are formed, and data flow is in

opposite direction in them. Also, if one ring fails, the second ring can act as a

backup, to keep the network up.

• Data is transferred in a sequential manner that is bit by bit. Data transmitted,

has to pass through each node of the network, till the destination node.

Advantages of Ring Topology:

• Transmitting network is not affected by high traffic or by adding more nodes,

as only the nodes having tokens can transmit data.

• Cheap to install and expand

Disadvantages of Ring Topology:

• Troubleshooting is difficult in ring topology.

• Adding or deleting the computers disturbs the network activity.

• Failure of one computer disturbs the whole network.

3. STAR Topology:In this type of topology all the computers are connected to a

single hub through a cable. This hub is the central

node and all others nodes are connected to the

central node.
Features of Star Topology:

• Every node has its own dedicated connection

to the hub.

• Hub acts as a repeater for data flow.

• Can be used with twisted pair, Optical Fibre or coaxial cable.

Advantages of Star Topology:

• Fast performance with few nodes

and low network traffic.

• Hub can be upgraded easily.

• Easy to troubleshoot.

• Easy to setup and modify.

• Only that node is affected which

has failed, rest of the nodes can

work smoothly.

Disadvantages of Star Topology:

• Cost of installation is high.

• Expensive to use.

• If the hub fails then the whole network is

stopped because all the nodes depend on the

hub.

• Performance is based

on the hub that is it

depends on its

capacity

4. MESH Topology:It is a point-to-point connection to other nodes or devices.

All the network nodes are connected to each other. Mesh has n(n-1)/2 physical

channels to link n devices.There are two techniques to transmit data over the

Mesh topology, they are: Routing and Flooding

MESH Topology (Routing):In routing, the nodes have

a routing logic, as per the network requirements. Like

routing logic to direct the data to reach the

destination using the shortest distance. Or, routing

logic which has information about the broken links,

and it avoids those node etc. We can even have

routing logic, to re-configure the failed nodes.

MESH Topology (Flooding): In flooding, the same data is transmitted to all the

network nodes, hence no routing logic is required. The network is robust, and the

its very unlikely to lose the data. But it leads to unwanted load over the network.

Types of Mesh Topology:

• Partial Mesh Topology: In this topology some of the systems are connected in

the same fashion as mesh topology but some devices are only connected to

two or three devices.

• Full Mesh Topology: Each and every nodes or devices are connected to each

other.

Features of Mesh Topology:

• Fully connected. • Robust. • Not flexible.

Advantages of Mesh Topology:

• Each connection can carry its own data

load.

• It is robust.

• Fault is diagnosed easily.

• Provides security and

privacy.

Disadvantages of Mesh Topology:

• Installation and configuration is

difficult.

• Cabling cost is more.

• Bulk wiring is required.

5. TREE Topology:It has a root node and all other nodes are connected to it

forming a hierarchy. It is also called

hierarchical topology. It should at least have

three levels to the hierarchy.

Features of Tree Topology:

• Ideal if workstations are located in

groups.

• Used in Wide Area Network.

Advantages of Tree Topology:

• Extension of bus and star topologies. • Expansion of nodes is possible

and easy.

• Easily managed and maintained. • Error detection is easily done.

Disadvantages of Tree Topology:

• Heavily cabled.

• Costly.

• If more nodes are added maintenance is difficult.

• Central hub fails, network fails.

6. HYBRID Topology:It is two different types of topologies which is a mixture

of two or more topologies. For example, if in an office in one department ring

topology is used and in another star topology is used, connecting these topologies

will result in Hybrid Topology (ring topology and star topology).

TYPES OF COMPUTER NETWORKS

The following are the types of networks based on the geographical area covered or

scale of the network.

Personal Area Network (PAN):A

PAN is a computer network organised

around a person. It is used for

communication between devices such

as phones, personal digital assistants,

printers and laptops that are in close

proximity. We can use these networks

to transfer files and photos between

the various devices.

Local Area Network (LAN):A LAN

is a computer network that is limited

to a local area such as a laboratory, a

school or an office building. Cables

(wires) or low-power radio-waves

(wireless) are used for the

connections in a LAN. A wireless LAN

(or WLAN) is also sometimes called

LAWN (Local Area Wireless Network).

Campus Area Network (CAN):A

CAN is a computer network that

connects multiple local area networks

(LAN) in a limited geographical area.

A CAN is smaller than a wide area

network (WAN) or metropolitan area

network (MAN). It can be set up by a

college, company and so on.

Metropolitan Area Network

(MAN):A MAN is a computer network

that usually covers a larger area than

a LAN. For example, a network that

connects two offices in a city, a

neighbourhood area and so on.

Wide Area Network (WAN):A WAN

is a computer network that spans a

wide geographical area. A WAN may be

spread across cities, countries and

continents. A WAN is formed by

connecting LANs and MANs. Computers

or networks across long distances are

usually connected with optical fibre

cables, satellite radio links or

microwave radio links.

Global Area Network (GAN):A global network, such as the internet, is

referred to as the Globe Area Network (GAN). The internet is, however, not the

only computer network of its kind. Internationally operating companies also

support local networks that comprise of several WANs and connect company

computers across the world. GANs use the fibre optic infrastructure from wide

area networks and combine these with international undersea cables or satellite

transmissions.

NETWORK DEVICES

NIC (Network Interface Card):

It is a hardware device that is attached to a computer

to enable it to communicate over the network. The NIC

has a ROM chip that contains a unique number, which is

the hardware address or the Media Access Control

(MAC) This hardware address uniquely identifies a computer on the network.

Modem (Modulator-demodulator):

It is an electronic device that converts the digital signals of a

computer into an analog form so that they can travel over a

telephone line. At the destination, the receiving modem converts

the analog signals back into their digital form so that the

destination computer understands them.Modems are used for connecting

computers to the Internet. Modems are connected to a computer and a telephone

line.

Hub:

A hub is a device that is used to connect computers in a network.

In a hub, when one computer sends data on the network, the hub

simply forwards the packets to all the other computers connected

to it. Each computer is responsible for determining which packets are destined for

it and which are to be ignored.

Switch:

A switch is a device that is also used to connect computers in a network. However,

a switch is a more intelligent device than a hub. Unlike a hub, the switch sends

the incoming data to the desired destination only. It

records the addresses of all the computers connected

to it. So, when a packet is received, the switch reads

the information about the destination address to

determine if the destination device is connected to it

or not. If the destination device is connected, the

switch forwards the packet only to that destination device. In this way, the other

computers do not have to read and deal with data that is not meant for them.

Router:

A router is a network device that connects two or more

networks. It is commonly used to connect a computer or

a network to the Internet. Lines from different networks

are connected to a router. Wireless routers are also

available. A router examines the address of the packet

coming on the line, uses the routing information stored

in it and forwards the packet to the next network. In

this way, a packet after going through multiple routers reaches its destination.

Bridge:

Bridges are used to connect two or more hosts or network

segments together. The basic role of bridges in network

architecture is storing and forwarding frames between the

different segments that the bridge connects. They use

hardware Media Access Control (MAC) addresses for

transferring frames. By looking at the MAC address of the

devices connected to each segment, bridges can forward the

data or block it from crossing. Bridges can also be used to connect two physical

LANs into a larger logical LAN.

Gateway:

Gateways normally work at the Transport and Session

layers of the OSI model. At the Transport layer and above,

there are numerous protocols and standards from different

vendors; gateways are used to deal with them. Gateways

provide translation between networking technologies such

as Open System Interconnection (OSI) and Transmission

Control Protocol/Internet Protocol (TCP/IP). Because of

this, gateways connect two or more autonomous networks, each with its own

routing algorithms, protocols, topology, domain name service, and network

administration procedures and policies.

Modem (Modulator-demodulator):

It is an electronic device that converts the

digital signals of a computer into an analog

form so that they can travel over a

telephone line. At the destination, the

receiving modem converts the analog

signals back into their digital form so that

the destination computer understands

them.

Repeater:

A repeater is an electronic device

that amplifies the signal it receives.

You can think of repeater as a device

which receives a signal and

retransmits it at a higher level or

higher power so that the signal can

cover longer distances, more than

100 meters for standard LAN cables. Repeaters work on the Physical layer.

USES OF INTERNET:

Internet is a virtual networking medium that can be connected and used on a

variety of devices these days. It enables the users to send, receive, collect, store,

update, delete, and many other operations of the data across the world. Internet

usage is expanding its boundaries every day, as the technological growth is huge.

A few of the major uses of Internet are e-commerce, e-learning, knowledge

sharing, social connectivity, variety of media, file transfer, communication, etc.

1. Electronic Mail (email):The first major use of the internet is Email. People

thronged to Email for sharing information, data files, Photos, Videos, Business

communications, and any other files instantaneously with others. This had enabled

faster communication between people and improve business efficiency. Email has

reduced the usage of paper considerably and reduced load on physical mail

systems.Though other latest collaboration tools provide many rich features, they

are not able to de-popularize Email and it still rules the official and personal

communication. There are many free Email websites offering mail services and

practically every individual has an Email address and connected by Email.

2. FTP File Transfer:This is the second major use case for the internet in the

early days. FTP is the file transfer protocol that enables data exchange between

two stakeholders over internet media in a secure way. The data exchange may

occur between two business entities or customers with business and vice versa.

Normally E-mail restricts the size of a file that can be shared and also it is not

secured to share sensitive and confidential data across public networks. FTP

concept is still in use even today in mobile apps for files downloading.

3. Search Engines:These engines locate the information one seeks, available in

whichever server across the globe (world wide web). Google, Yahoo, and MSN are

the renowned search engines in use today. One can search on anything in this site

and the search question can be in any format. In fact, People have started using

the word Google as a generic verb synonymous to search.

4. E-Commerce:The Internet enables the selling of goods and services in online

mode. There are many e-commerce platform vendors like Amazon, Ola who

aggregate several products/services available in the market and sell them through

their portal to customers. Products are procured by platform vendors, stored in

their warehouses, packed and distributed by them in their own brand. Customers

get a good discount and they don’t have to visit physical stores.

5. Online Banking:Called as Net banking, it allows doing banking transactions at

ease sitting at home or while on mobile. Footfalls in the bank branches have come

down appreciably with almost all the services are available in net banking 24×7.

Any amount of money can be transferred instantaneously through this facility. E-

Banking supports Electricity bills, Telephone bills, and other services payment.

6. Cashless Transactions:Bill Payment at merchandise outlets through debit

cards, credit cards, UPI gateway are on the increase. Cash circulation gets

reduced in the system to the extent of the growth of these transactions. It’s

growing by more than 50% every year and it is expected to grow by 10 times over

the next 5 years.

7. Education:The Internet offers a wealth of educational material on any subject

with structured navigation and search facilities. One can seek any reading

material and the internet will get it for them from any server in any part of the

world and people need not have to go to libraries to go through books. Those who

cannot attend physical (face to face) class can take an online course where they

get connected to the teacher, in the other part of the world, in video mode and

get taught on the subject backed up other audio-visual tools.

8. Internet Conferencing:Online chat tools like messenger, Skype, and other

video conferencing tools help people to get connected 24x7 and have a hassle-free

business and personal discussion. This avoids unwanted travel by people and save

their time for productive use. The Internet has also facilitated work from home

with seamless connectivity to the office and avoid daily commuting.

9. Social Networking:Internet connects people online and enables them to form

social groups. Information, Ideas, views, and opinions on any social/political issues

are exchanged. The political and social organization makes use of this platform in

promoting their interest among the public.

10. Chatting:On the Internet, chatting is talking to other people who are using the

Internet at the same time you are. Usually, this "talking" is the exchange of typed-

in messages requiring one site as the repository for the messages (or "chat site")

and a group of users who take part from anywhere on the Internet. In some cases,

a private chat can be arranged between two parties who meet initially in a group

chat. Chats can be ongoing or scheduled for a particular time and duration. Most

chats are focused on a particular topic of interest and some involve guest experts

or famous people who "talk" to anyone joining the chat.

11. WWW:WWW stands for World Wide Web. A technical definition of the World

Wide Web is: all the resources and users on the Internet that are using the

Hypertext Transfer Protocol (HTTP).The World Wide Web is the universe of

network-accessible information, an embodiment of human knowledge.In simple

terms, The World Wide Web is a way of exchanging information between

computers on the Internet, tying them together into a vast collection of

interactive multimedia resources.

12. E-Newspapers: E-Newspapers are newspapers which are published

electronically. They can take the form of normal print publications published on

the Internet; additional or complimentary content to print publications published

on-line; or original publications published exclusively on the World Wide Web.

Many news organizations require subscription to e-newspapers, just like regular

print newspapers. E-newspapers run the gauntlet of newspapers, from serious hard

news, to features, to arts and entertainment, to sports, and everything in

between.

DIFFERENT TYPES OF INTERNET CONNECTIONS

There are many ways a personal electronic device can connect to the internet.

They all use different hardware and each has a range of connection speeds. As

technology changes, faster internet connections are needed to handle those

changes. I thought it would be interesting to list some of the different types of

internet connections that are available for home and personal use, paired with

their average speeds.

Dial-Up (Analog 56K):Dial-up access is cheap but slow. A modem (internal or

external) connects to the Internet after the computer dials a phone number. This

analog signal is converted to digital via the modem and sent over a land-line

serviced by a public telephone network. Telephone lines are variable in quality

and the connection can be poor at times. The lines regularly experience

interference and this affects the speed, anywhere from 28K to 56K. Since a

computer or other device shares the same line as the telephone, they can’t be

active at the same time.

DSL: DSL stands for Digital Subscriber Line. It is an internet connection that is

always “on”. This uses 2 lines so your phone is not tied up when your computer is

connected. There is also no need to dial a phone number to connect. DSL uses a

router to transport data and the range of connection speed, depending on the

service offered, is between 128K to 8 Mbps.

Cable: Cable provides an internet connection through a cable modem and

operates over cable TV lines. There are different speeds depending on if you are

uploading data transmissions or downloading. Since the coax cable provides a

much greater bandwidth over dial-up or DSL telephone lines, you can get faster

access. Cable speeds range from 512K to 20 Mbps.

Wireless: Wireless, or Wi-Fi, as the name suggests, does not use telephone lines

or cables to connect to the internet. Instead, it uses radio frequency. Wireless is

also an always on connection and it can be accessed from just about anywhere.

Wireless networks are growing in coverage areas by the minute so when I mean

access from just about anywhere, I really mean it. Speeds will vary, and the

range is between 5 Mbps to 20 Mbps.

Satellite:Satellite accesses the internet via a satellite in Earth’s orbit. The

enormous distance that a signal travels from earth to satellite and back again,

provides a delayed connection compared to cable and DSL. Satellite connection

speeds are around 512K to 2.0 Mbps.

Cellular: Cellular technology provides wireless Internet access through cell

phones. The speeds vary depending on the provider, but the most common are 3G

and 4G speeds. A 3G is a term that describes a 3rd generation cellular network

obtaining mobile speeds of around 2.0 Mbps. 4G is the fourth generation of

cellular wireless standards. The goal of 4G is to achieve peak mobile speeds of 100

Mbps but the reality is about 21 Mbps currently.

ISP(INTERNET SERVICE PROVIDER)

An ISP is a company that provides individuals and other companies access to the

Internet and other related services such as Web site building and virtual hosting.

An ISP has the equipment and the telecommunication line access required to have

a point-of-presence on the Internet for the geographic area served. The larger ISPs

have their own high-speed leased lines so that they are less dependent on the

telecommunication providers and can provide better service to their customers.

Short Question

1. Define Network.

2. What is Internet?

3. Define E-MAIL.

4. Define switch.

5. Define Hub.

6. Define Repeater.

7. Define ISP.

8. Define WWW.

Long Question

1. Discuss the different types of computer network.

2. Explain the different services used in Internet.

3. Explain the different network devices used in computer network.

CH4-FILE MANAGEMENT & DATA PROCESSING

FILE AND FOLDER

File:A File is defined as a set of related data or information that is

being stored in secondary storage. A file is data file or a program file

where former contains data and information in the form of

alphanumeric, numeric or binary and latter containing the program

code and can also be executed, is a program file.

Folder:It is used to contain many other folders and files. We can have

any number of folders, and each folder can have different/numerous

entries depending on the files created where each file has a position in

a parent folder.

Difference between File and Folder:

SL.
NO.

COMPARISON FILE FOLDER

1 Extensions Files can have extensions.
Folders does not have any
extensions.

2 Organizations
Serial, sequential, indexed
sequential and direct file
organizations.

Single directory per user and
multiple directories per user
organization.

3
Contain other
same entity

No. Yes.

4 Basic Collection of data.
A place to store a group of
related files and folders.

5
Space
consumption

There is a specific size of a file.
Folder does not consume space
in the memory.

6 Properties
It has Name, Extension, Date,
Time, Length and Protection
attributes.

It has Name, Date, Time and
Protection attributes.

7
After
Creation

After creation, we can open,
save, rename, print, email and
modify file content.

After creation, we can move,
rename and delete folders.

8
Share on
Network

We can’t share file on network. We can share folder on network.

FILE ACCESS METHODS

When a file is used, information is read and accessed into computer memory and

there are several ways to access this information of the file. Some systems provide

only one access method for files. Other systems, such as those of IBM, support

many access methods, and choosing the right one for a particular application is a

major design problem.There are three ways to access a file into a computer

system: Sequential-Access, Direct Access, Index sequential Method.

Sequential Access:It is the simplest access method. Information in the file is

processed in order, one record after the other. This mode of access is by far the

most common; for example, editor and compiler usually access the file in this

fashion.Read and write make up the bulk of the operation on a file. A read

operation -read next- read the next position of the file and automatically advance

a file pointer, which keeps track I/O location. Similarly, for the writewrite

next append to the end of the file and advance to the newly written material.

Key points:

• Data is accessed one record right after another record in an order.

• When we use read command, it move ahead pointer by one

• When we use write command, it will allocate memory and move the pointer

to the end of the file.

• Such a method is reasonable for tape.

Direct Access:Another method is direct access method also known as relative

access method. A filed-length logical record that allows the program to read and

write record rapidly. in no particular order. The direct access is based on the disk

model of a file since disk allows random access to any file block. For direct

access, the file is viewed as a numbered sequence of block or record. Thus, we

may read block 14 then block 59 and then we can write block 17. There is no

restriction on the order of reading and writing for a direct access file.A block

number provided by the user to the operating system is normally a relative block

number, the first relative block of the file is 0 and then 1 and so on.

Index SequentialAccessMethod (ISAM):It is the other method of accessing a

file which is built on the top of the direct access method. These methods

construct an index for the file. The index, like an index in the back of a book,

contains the pointer to the various blocks. To find a record in the file, we first

search the index and then by the help of pointer we access the file directly.
Key points:

• It is built on top of Sequential access.

• It controls the pointer by using index.

DATA PROCESSING

Data can be handled in 4 ways.

Data capture: Data capture, or electronic data capture, is the process of

extracting information from a document and converting it into data readable by a

computer.More generally, data capturing can also refer to collecting relevant

information whether sourced from paper or electronic documents. Optical

character recognition can also be a component of data capture involving the

extraction of text from scanned or digital documents (receipts, contracts, books,

etc.,) and the conversion of the results into data for editing and processing.

Data storage: Data storage is a general term for archiving data in

electromagnetic or other forms for use by a computer or device. Different types of

data storage play different roles in a computing environment. In addition to forms

of hard data storage, there are now new options for remote data storage, such as

cloud computing, that can revolutionize the ways that users access data.

Data process:Data processing is the conversion of data into usable and desired

form. This conversion or “processing” is carried out using a predefined sequence

of operations either manually or automatically. Most of the processing is done by

using computers and thus done automatically. The output or “processed” data can

be obtained in various forms. Example of these forms include image, graph, table,

vector file, audio, charts or any other desired format. The form obtained depends

on the software or method of data processing used. When done itself it is referred

to as automatic data processing.

Data Retrieval:Data retrieval is the process of identifying and extracting data

from a database, based on a query provided by the user or application.It enables

the fetching of data from a database in order to display it on a monitor and/or use

within an application.Data retrieval typically requires writing and executing data

retrieval or extraction commands or queries on a database. Based on the query

provided, the database looks for and retrieves the data requested. Applications

and software generally use various queries to retrieve data in different formats. In

addition to simple or smaller data, data retrieval can also include retrieving large

amounts of data, usually in the form of reports.

Short Question

1. What is file?

2. What is folder?

3. What is sequence access?

4. Define data capture.

Long Questions

What is file ? Discuss the different types of file access method.

CH-5 PROBLEM SOLVING METHODOLOGY

ALGORITHMS

Introduction:The word Algorithm means “a

process or set of rules to be followed in

calculations or other problem-solving operations”.

Therefore, Algorithm refers to a set of

rules/instructions that step-by-step define how a

work is to be executed upon in order to get the expected results.It can be

understood by taking an example of cooking a new recipe. To cook a new recipe,

one reads the instructions and steps and execute them one by one, in the given

sequence. The result thus obtained is the new dish cooked perfectly. Similarly,

algorithms help to do a task in programming to get the expected output.The

Algorithm designed are language-independent, i.e. they are just plain instructions

that can be implemented in any language, and yet the output will be the same, as

expected.

Characteristics of an Algorithm:As one would not follow any written

instructions to cook the recipe, but only the standard one. Similarly, not all

written instructions for programming is an algorithm. In order for some

instructions to be an algorithm, it must have the following characteristics:

• Clear and Unambiguous: Algorithm

should be clear and unambiguous. Each

of its steps should be clear in all aspects

and must lead to only one meaning.

• Well-Defined Inputs: If an algorithm

says to take inputs, it should be well-

defined inputs.

• Well-Defined Outputs: The algorithm must clearly define what output will be

yielded and it should be well-defined as well.

• Finite-ness: The algorithm must be finite, i.e. it should not end up in an

infinite loop or similar.

• Feasible: The algorithm must be simple, generic and practical, such that it

can be executed upon will the available resources. It must not contain some

future technology, or anything.

• Language Independent: The Algorithm designed must be language-

independent, i.e. it must be just plain instructions that can be implemented

in any language, and yet the output will be same, as expected.

Pseudocode:It’s simply an implementation of an algorithm in the form of

annotations and informative text written in plain English. It has no syntax like any

of the programming language and thus can’t be compiled or interpreted by the

computer.

Examples of Algorithms in Programming:

1. Write an algorithm to add two numbers entered by the user.

Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

 sum←num1+num2

Step 5: Display sum

Step 6: Stop

2. Write an algorithm to find the largest among three different numbers

entered by the user.

Step 1: Start

Step 2: Declare variables a,b and c.

Step 3: Read variables a,b and c.

Step 4: If a > b&&If a > c

 Display ‘a’ is the largest number.

 Else

 Display ‘c’ is the largest number.

 Else

 If b > c

 Display ‘b’ is the largest number.

 Else

 Display ‘c’ is the greatest number.

Step 5: Stop

3. Write an algorithm to check whether a number is prime or not.

Step 1: Start

Step 2: Declare variables n, i, flag.

Step 3: Initialize variables

 flag ← 1

 i← 2

Step 4: Read n from the user.

Step 5: Repeat the steps until i<(n/2)

 5.1 If remainder of n÷i equals 0

 flag ← 0

 Go to step 6

 5.2 i← i+1

Step 6: If flag = 0

 Display n is not prime

 else

 Display n is prime

Step 7: Stop

4. Write an algorithm to find the factorial of a number entered by the user.

Step 1: Start

Step 2: Declare variables n, factorial and i.

Step 3: Initialize variables

 factorial ← 1

 i← 1

Step 4: Read value of n

Step 5: Repeat the steps until i = n

 5.1: factorial ← factorial*i

 5.2: i← i+1

Step 6: Display factorial

Step 7: Stop

5. Write an algorithm to find the Fibonacci series till term≤1000.

Step 1: Start

Step 2: Declare variables first_term,second_term and temp.

Step 3: Initialize variables first_term← 0 second_term← 1

Step 4: Display first_term and second_term

Step 5: Repeat the steps until second_term ≤ 1000

 5.1: temp ←second_term

 5.2: second_term←second_term + first_term

 5.3: first_term← temp

 5.4: Display second_term

Step 6: Stop

6. Write an algorithm to find all roots of a quadratic equation ax2+bx+c=0.

Step 1: Start

Step 2: Declare variables a, b, c, D, x1, x2, rp and ip;

Step 3: Calculate discriminant

 D ← b2-4ac

Step 4: If D ≥ 0

 r1 ← (-b+√D)/2a

 r2 ← (-b-√D)/2a

 Display r1 and r2 as roots.

 Else

 Calculate real part and imaginary part

 rp← b/2a

 ip←√(-D)/2a

 Display rp+j(ip) and rp-j(ip) as roots

Step 5: Stop

FLOWCHART

Flowchart is a graphical representation of an algorithm. Programmers often use it

as a program-planning tool to solve a problem. It makes use of symbols which are

connected among them to indicate the flow of information and processing.

Symbols used in Flowchart:

Terminal: The oval symbol indicates Start, Stop and Halt in a

program’s logic flow. A pause/halt is generally used in a

program logic under some error conditions. Terminal is the

first and last symbols in the flowchart.

Input/Output: A parallelogram denotes any function of

input/output type. Program instructions that take input from

input devices and display output on output devices are

indicated with parallelogram in a flowchart.

Processing: A box represents arithmetic instructions. All

arithmetic processes such as adding, subtracting,

multiplication and division are indicated by action or process

symbol.

Decision: Diamond symbol represents a decision point. Decision

based operations such as yes/no question or true/false are

indicated by diamond in flowchart.

Connectors: Whenever flowchart becomes complex or it spreads

over more than one page, it is useful to use connectors to avoid any

confusions. It is represented by a circle.

Flow lines: Flow lines indicate the exact sequence in which instructions are

executed. Arrows represent the direction of flow of control and relationship

among different symbols of flowchart.

Example: Draw a flowchart to input two numbers from user and display the

largest of two numbers.

Examples of flowcharts in programming:

1. Add two numbers entered by

the user.

2. Find the largest among three different

numbers entered by the user.

3. Find the Fibonacci series till

term≤1000.

4. Find all the roots of a quadratic equation

ax2+bx+c=0.

Generations of Programming Language

First Generation Languages:Here we are talking about machine code. This is the

only form of code that can be executed by the computer directly.

Second Generation Languages:Assembly language was developed to make it

easier for programmers to write instructions than it would be using machine code.

Mnemonics are used instead of bit patterns (which are harder to remember). First

and second-generation languages are low level and machine-oriented. This refers

to the way that they are based on the machine operations that are available for a

given processor.

Third Generation Languages:Third generation languages are high level, platform-

independent and problem oriented. When source code is compiled, there is a

one-to-many equivalence of high-level language statements to machine code

statements. Third generation programs can be run on any platform for which an

appropriate compiler or interpreter exists.High level languages are developed to

help solve particular types of problem. The FORTRAN language was designed with

Mathematics, Science and Engineering in mind, it contains lots of scientific

functions that the average programmer may not need. The COBOL language was

developed with business logic in mind, PHP was developed for server-side scripting

and so on.

All of the languages in the first 3 generations are called imperative languages

because the program's statements are executed in the order specified by the

programmer.

Fourth Generation Languages:Fourth generation languages are declarative. This

means that the programmer will write facts or rules rather than statements. The

interpreter for the language produces the result using whichever standard

algorithms it has been given for doing so.SQL and Prolog are both examples of

declarative languages. Both are described in the programming section of this site

and are relatively easy to try out. A quick half-hour blast at each would give you a

feel for how they work and help you to understand how they differ from the other

types of language.

STRUCTURED PROGRAMMING LANGUAGE

Structured Programming Approach, as the word suggests, can be defined as a

programming approach in which the program is made as a single structure. It

means that the code will execute the instruction by instruction one after the

other. It doesn’t support the possibility of jumping from one instruction to some

other with the help of any statement like GOTO, etc. Therefore, the instructions

in this approach will be executed in a serial and structured manner. The

structured program consists of well-structured and separated modules. But the

entry and exit in a Structured program is a single-time event. It means that the

program uses single-entry and single-exit elements. The languages that support

Structured programming approach are:C, C++, Java, C#.

Short Questions

1. What is algorithm.?

2. What is Flowchart?

3. What is pseudo code?

4. Define Structure programming language.

CH 6-OVERVIEW OF C PROGRAMMING LANGUAGE

CONSTANTS

As the name suggests the name constants is given to such variables or values in

C/C++ programming language which cannot be modified once they are defined.

They are fixed values in a program. There can be any types of constants like

integer, float, octal, hexadecimal, character constants etc. Every constant has

some range. The integers that are too big to fit into an int will be taken as long.

Now there are various ranges that differ from unsigned to signed bits. Under the

signed bit, the range of an int varies from -128 to +127 and under the unsigned

bit, int varies from 0 to 255.

Defining Constants:

In C program we can define constants in two ways as shown below.

Using #define pre-processor directive:

#include<stdio.h>

#define val 10

#define floatVal 4.5

#define charVal 'G'

int main()

{

printf("Integer Constant: %d\n",val);

printf("Floating point Constant: %.1f\n",floatVal);

printf("Character Constant: %c\n",charVal);

return 0;

}

Output:

Integer Constant: 10

Floating point Constant: 4.5

Character Constant: G

Using a const keyword:

#include <stdio.h>

int main()

{

constintintVal = 10;

const float floatVal = 4.14;

const char charVal = 'A';

const char stringVal[10] = "ABC";

printf("Integer constant:%d \n", intVal);

printf("Floating point constant: %.2f\n", floatVal);

printf("Character constant: %c\n", charVal);

printf("String constant: %s\n", stringVal);

 return 0;

}

Output:

Integer constant: 10

Floating point constant:

4.14

Character constant: A

String constant: ABC

VARIABLE IN ‘C’

A variable definition tells the compiler where and how much storage to create for

the variable. A variable definition specifies a data type and contains a list of one

or more variables of that type as follows −

 type variable_list;

Here, type must be a valid C data type including char, w_char, int, float, double,

bool, or any user-defined object; and variable_list may consist of one or more

identifier names separated by commas. Some valid declarations are shown here −

inti, j, k;

char c, ch;

float f, salary;

double d;

The line inti, j, k; declares and defines the variables i, j, and k; which instruct the

compiler to create variables named i, j and k of type int.Variables can be

initialized (assigned an initial value) in their declaration. The initializer consists of

an equal sign followed by a constant expression as follows –

 type variable_name = value;

Example

Try the following example, where variables have been declared at the top, but

they have been defined and initialized inside the main function –

#include <stdio.h>

// Variable declaration:

extern int a, b;

extern int c;

extern float f;

int main ()

{

 /* variable definition: */

 int a, b;

 int c;

 float f;

 /* actual initialization */

 a = 10;

 b = 20;

 c = a + b;

printf("value of c : %d \n", c);

 f = 70.0/3.0;

printf("value of f : %f \n", f);

 return 0;

}

Output:

value of c : 30

value of f : 23.333334

DIFFERENCE BETWEEN VARIABLE AND CONSTANT

CONSTANTS VARIABLE

A value that cannot be altered

throughout the program

A storage location paired with an associated

symbolic name which has a value

It is similar to a variable but it

cannot be modified by the program

once defined

A storage area holds data

Cannot be changed
Can be changed according to the need of the

programmer

Value is fixed Value is varying

C PROGRAMMING – MANAGING INPUT AND OUTPUT OPERATIONS

Input means to provide the program with some data to be used in the program and

Output means to display data on screen or write the data to a printer or a file.C

programming language provides many built-in functions to read any given input

and to display data on screen when there is a need to output the result.All these

built-in functions are present in C header files, we will also specify the name of

header files in which a particular function is defined while discussing about it.

scanf() and printf() functions

The standard input-output header file, named stdio.h contains the definition of

the functions printf() and scanf(), which are used to display output on screen and

to take input from user respectively.

Example:

#include<stdio.h>

void main()

{

inta,b,c;

printf("Please enter any two numbers: \n");

scanf("%d %d", &a, &b);

c = a + b;

printf("The addition of two number is: %d", c);

}

Output:

Please enter any two numbers:

12

3

The addition of two number

is:15

You must be wondering what is the purpose of %d inside the scanf() or printf()

functions. It is known as format string and this informs the scanf() function, what

type of input to expect and in printf() it is used to give a heads up to the

compiler, what type of output to expect.

Format

String

Meaning

%d Scan or print an integer as signed decimal number

%f Scan or print a floating-point number

%c To scan or print a character

C – Operators

An operator is a symbol that tells the compiler to perform specific mathematical

or logical functions. C language is rich in built-in operators and provides the

following types of operators −

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Bitwise Operators

5. Assignment Operators

6. Misc Operators

Arithmetic Operators-

The following table shows all the arithmetic operators supported by the C

language. Assume variable A holds 10 and variable B holds 20 then –

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

%
Modulus Operator and remainder of after an integer

division.
B % A = 0

++ Increment operator increases the integer value by one. A++ = 11

--
Decrement operator decreases the integer value by

one.
A-- = 9

Relational Operators-

The following table shows all the relational operators supported by C. Assume

variable A holds 10 and variable B holds 20 then –

Operator Description Example

==
Checks if the values of two operands are equal or not.

If yes, then the condition becomes true.

(A==B) is not

true.

!=

Checks if the values of two operands are equal or not.

If the values are not equal, then the condition becomes

true.

(A!=B) is

true.

>

Checks if the value of left operand is greater than the

value of right operand. If yes, then the condition

becomes true.

(A>B) is not

true.

<

Checks if the value of left operand is less than the

value of right operand. If yes, then the condition

becomes true.

(A<B) is

true.

>=

Checks if the value of left operand is greater than or

equal to the value of right operand. If yes, then the

condition becomes true.

(A>=B) is not

true.

<= Checks if the value of left operand is less than or equal (A<=B) is

to the value of right operand. If yes, then the condition

becomes true.

true.

Logical Operators-

Following table shows all the logical operators supported by C language. Assume

variable A holds 1 and variable B holds 0, then –

Operator Description Example

&&
Called Logical AND operator. If both the operands are

non-zero, then the condition becomes true.

(A&&B) is

false.

||
Called Logical OR Operator. If any of the two operands

is non-zero, then the condition becomes true.

(A||B) is

true.

!

Called Logical NOT Operator. It is used to reverse the

logical state of its operand. If a condition is true, then

Logical NOT operator will make it false.

!(A&&B) is

true.

Bitwise Operators-

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables

for &, |, and ^ is as follows –

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

The following table lists the bitwise operators supported by C. Assume variable 'A'

holds 60 and variable 'B' holds 13, then –

Operator Description Example

&
Binary AND Operator copies a bit to the

result if it exists in both operands.
(A & B) = 12, i.e., 0000 1100

|
Binary OR Operator copies a bit if it

exists in either operand.
(A | B) = 61, i.e., 0011 1101

^
Binary XOR Operator copies the bit if it

is set in one operand but not both.
(A ^ B) = 49, i.e., 0011 0001

~

Binary One's Complement Operator is

unary and has the effect of 'flipping'

bits.

(~A) = ~(60), i.e,. -0111101

<<

Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

A << 2 = 240 i.e., 1111 0000

>>

Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

A >> 2 = 15 i.e., 0000 1111

operand.

Assignment Operators-

The following table lists the assignment operators supported by the C language –

Operator Description Example

=

Simple assignment operator. Assigns values

from right side operands to left side

operand

C=A+B will assign the

value of A+B to C

+=

Add AND assignment operator. It adds the

right operand to the left operand and

assign the result to the left operand.

C+=A is equivalent to

C=C+A

-=

Subtract AND assignment operator. It

subtracts the right operand from the left

operand and assigns the result to the left

operand.

C-=A is equivalent to

C=C-A

*=

Multiply AND assignment operator. It

multiplies the right operand with the left

operand and assigns the result to the left

operand.

C*=A is equivalent to

C=C*A

/=

Divide AND assignment operator. It divides

the left operand with the right operand

and assigns the result to the left operand.

C/=A is equivalent to

C=C/A

%=

Modulus AND assignment operator. It takes

modulus using two operands and assigns

the result to the left operand.

C%=A is equivalent to

C=C%A

<<= Left shift AND assignment operator. C<<=2 is same as C=C<<2

>>= Right shift AND assignment operator. C>>=2 is same as C=C>>2

&= Bitwise AND assignment operator. C&=2 is same as C=C&2

^=
Bitwise exclusive OR and assignment

operator.
C^=2 is same as C=C^2

|=
Bitwise inclusive OR and assignment

operator.
C|=2 is same as C=C|2

Misc Operators ↦sizeof& ternary-

Besides the operators discussed above, there are a few other important operators

including sizeof and ? : supported by the C Language.

Operator Description Example

sizeof() Returns the size of a variable. sizeof(a), where a is integer, will return 4.

&
Returns the address of a

variable.

&a; returns the actual address of the

variable.

* Pointer to a variable. *a;

? : Conditional Expression.
If Condition is true? then value X :

otherwise value Y

Operators Precedence in C-

Operator precedence determines the grouping of terms in an expression and

decides how an expression is evaluated. Certain operators have higher precedence

than others; for example, the multiplication operator has a higher precedence

than the addition operator.For example, x = 7 + 3 * 2; here, x is assigned 13, not

20 because operator * has a higher precedence than +, so it first gets multiplied

with 3*2 and then adds into 7.Here, operators with the highest precedence appear

at the top of the table, those with the lowest appear at the bottom. Within an

expression, higher precedence operators will be evaluated first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* &sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift <<>> Left to right

Relational <<= >>= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

C EXPRESSIONS

In any programming language, if we want to perform any calculation or to frame

any condition etc., we use a set of symbols to perform the task. These set of

symbols makes an expression.In the C programming language, an expression is

defined as follows: An expression is a collection of operators and operands that

represents a specific value.

In the above definition, an operator is a symbol that performs tasks like arithmetic

operations, logical operations, and conditional operations, etc.Operands are the

values on which the operators perform the task. Here operand can be a direct

value or variable or address of memory location.

Expression Types in C

In the C programming language, expressions are divided into THREE types. They

are as follows based on the operator position in the expression.

 1. Infix Expression 2. Postfix Expression 3. Prefix Expression

Infix Expression:The expression in which the

operator is used between operands is called infix

expression.The infix expression has the following

general structure.

Postfix Expression:The expression in which the

operator is used after operands is called postfix

expression.The postfix expression has the

following general structure.

Prefix Expression:The expression in which the

operator is used before operands is called a

prefix expression.The prefix expression has the

following general structure.

C - TYPE CASTING OR TYPE CONVERSION

Converting one datatype into another is known as type casting or, type-

conversion. For example, if you want to store a 'long' value into a simple integer

then you can type cast 'long' to 'int'. You can convert the values from one type to

another explicitly using the cast operator as follows –

(type_name) expression

Consider the following example where the cast operator causes the division of one

integer variable by another to be performed as a floating-point operation –

Example:

#include <stdio.h>

main()

{

 int sum = 17, count = 5;

 double mean;

 mean = (double) sum / count;

printf("Value of mean : %f\n", mean);

}

Output:

Value of mean : 3.400000

C - DECISION MAKING

Decision making structures require that the

programmer specifies one or more conditions to be

evaluated or tested by the program, along with a

statement or statements to be executed if the

condition is determined to be true, and optionally,

other statements to be executed if the condition is

determined to be false.C programming language

assumes any non-zero and non-null values as true, and

if it is either zero or null, then it is assumed as false

value.C programming language provides the following

types of decision-making statements.

Sl.No. Statement & Description

1
if statement: An if statement consists of a boolean expression followed

by one or more statements.

2
if...else statement: An if statement can be followed by an optional else

statement, which executes when the Boolean expression is false.

3
nested if statements: You can use one if or else if statement inside

another if or else if statement(s).

4
switch statement: A switch statement allows a variable to be tested for

equality against a list of values.

5
nested switch statements: You can use one switch statement inside

another switch statement(s).

if statement

An if statement consists of a Boolean expression followed by one or more

statements.

Syntax if(boolean_expression)

{

 /* statement(s) will execute if the boolean expression is true */

}

If the Boolean expression evaluates to true, then

the block of code inside the 'if' statement will be

executed. If the Boolean expression evaluates to

false, then the first set of code after the end of

the 'if' statement (after the closing curly brace)

will be executed.C programming language

assumes any non-zero and non-null values as

true and if it is either zero or null, then it is

assumed as false value.

Example:

#include <stdio.h>

int main ()

{

 int a = 10;

 if(a < 20)

{

printf("a is less than 20\n"

);

 }

printf("value of a is :

%d\n", a);

 return 0;

}

Output:

a is less than 20;

value of a is : 10

if...else statement

An if statement can be followed by an optional else statement, which executes

when the Boolean expression is false.

Syntax if(boolean_expression) {

 /* statement(s) will execute if the boolean expression is true */

} else {

 /* statement(s) will execute if the boolean expression is false */

}

If the Boolean expression evaluates to true, then

the if block will be executed, otherwise, the

else block will be executed.C programming

language assumes any non-zero and non-null

values as true, and if it is either zero or null,

then it is assumed as false value.

Example:

#include <stdio.h>

int main ()

{

 int a = 100;

 if(a < 20)

{

printf("a is less than 20\n");

 }

else

{

printf("a is not less than

20\n");

 }

printf("value of a is : %d\n",

a);

 return 0;

}

Output:

a is not less than

20;

value of a is : 100

if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is

very useful to test various conditions using single if...else if statement.When using

if...else if..else statements, there are few points to keep in mind −

• An if can have zero or one else's and it must come after any else if's.

• An if can have zero to many else if's and they must come before the else.

• Once an else if succeeds, none of the remaining else if's or else's will be

tested.

Syntax if(boolean_expression 1) {

 /* Executes when the boolean expression 1 is true */

} else if(boolean_expression 2) {

 /* Executes when the boolean expression 2 is true */

} else if(boolean_expression 3) {

 /* Executes when the boolean expression 3 is true */

} else {

 /* executes when the none of the above condition is true */

}

Example:

#include <stdio.h>

int main ()

{

int a = 100;

 if(a == 10)

{

printf("Value of a is 10\n");

 }

else if(a == 20)

{

printf("Value of a is 20\n");

 }

else if(a == 30)

{

printf("Value of a is 30\n");

 }

else

{

printf("None of the values is matching\n");

 }

printf("Exact value of a is: %d\n", a);

 return 0;

Output:

None of the values is matching

Exact value of a is: 100

}

nested if statements

It is always legal in C programming to nest if-else statements, which means you

can use one if or else if statement inside another if or else if statement(s).

Syntax if(boolean_expression 1) {

 /* Executes when the boolean expression 1 is true */

 if(boolean_expression 2) {

 /* Executes when the boolean expression 2 is true */

 }

}

You can nest else if...else in the similar way as you have nested if statements.

Example:

#include <stdio.h>

int main ()

{

 int a = 100;

 int b = 200;

 if(a == 100)

{

 if(b == 200)

{

printf("Value of a is 100 and b is 200\n");

 }

 }

printf("Exact value of a is : %d\n", a);

printf("Exact value of b is : %d\n", b);

 return 0;

}

Output:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

switch statement

A switch statement allows a variable to be tested for equality against a list of

values. Each value is called a case, and the variable being switched on is checked

for each switch case.

Syntax switch(expression) {

 case constant-expression :

 statement(s);

 break; /* optional */

 case constant-expression :

 statement(s);

 break; /* optional */

 /* you can have any number of case statements */

 default : /* Optional */

 statement(s);

}

The following rules apply to a switch statement −

• The expression used in a switch

statement must have an integral or

enumerated type, or be of a class type

in which the class has a single

conversion function to an integral or

enumerated type.

• You can have any number of case

statements within a switch. Each case

is followed by the value to be

compared to and a colon.

• The constant-expression for a case

must be the same data type as the

variable in the switch, and it must be a

constant or a literal.

• When the variable being switched on is

equal to a case, the statements

following that case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the flow of

control jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow of

control will fall through to subsequent cases until a break is reached.

• A switch statement can have an optional default case, which must appear at

the end of the switch. The default case can be used for performing a task

when none of the cases is true. No break is needed in the default case.

Example:

#include <stdio.h>

int main ()

{

 char grade = 'B';

 switch(grade)

{

 case 'A' :

printf("Excellent!\n");

 break;

 case 'B' :

 case 'C' :

printf("Well done\n");

 break;

 case 'D' :

printf("You passed\n");

 break;

 case 'F' :

printf("Better try again\n");

 break;

 default :

printf("Invalid grade\n");

 }

printf("Your grade is %c\n", grade);

 return 0;

}

Output:

Well done

Your grade is B

nested switch statements

It is possible to have a switch as a part of the statement sequence of an outer

switch. Even if the case constants of the inner and outer switch contain common

values, no conflicts will arise.

Syntax switch(ch1)

 {

 case 'A':

printf("This A is part of outer switch");

 switch(ch2)

 {

 case 'A':

printf("This A is part of inner switch");

 break;

 case 'B': /* case code */

 }

 break;

 case 'B': /* case code */

}

Example:

#include <stdio.h>

int main ()

{

 int a = 100;

 int b = 200;

 switch(a)

{

 case 100:

printf("This is part of outer switch\n", a);

 switch(b)

{

 case 200:

printf("This is part of inner switch\n", a);

 }

 }

printf("Exact value of a is : %d\n", a);

printf("Exact value of b is : %d\n", b);

 return 0;

Output:

This is part of outer switch

This is part of inner switch

Exact value of a is : 100

Exact value of b is : 200

}

C – LOOPS

You may encounter situations, when a block

of code needs to be executed several number

of times. In general, statements are

executed sequentially: The first statement in

a function is executed first, followed by the

second, and so on.Programming languages

provide various control structures that allow

for more complicated execution paths.A loop

statement allows us to execute a statement

or group of statements multiple times.

Sl.No. Loop Type & Description

1 while loop: Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the loop body.

2 for loop: Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

3 do...while loop: It is more like a while statement, except that it tests

the condition at the end of the loop body.

4 nested loops: You can use one or more loops inside any other while, for,

or do..while loop.

while loop

A while loop in C programming repeatedly executes a target statement as long as

a given condition is true.

Syntax while(condition) {

 statement(s);

}

Here, statement(s) may be a single statement or

a block of statements. The condition may be any

expression, and true is any nonzero value. The

loop iterates while the condition is true.When the

condition becomes false, the program control

passes to the line immediately following the

loop.Here, the key point to note is that a while

loop might not execute at all. When the condition

is tested and the result is false, the loop body

will be skipped and the first statement after the while loop will be executed.

Example:

#include <stdio.h>

int main ()

{

 int a = 10;

 while(a < 20)

{

printf("value of a: %d\n", a);

 a++;

 }

 return 0;

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

for loop

A for loop is a repetition control structure that allows you to efficiently write a

loop that needs to execute a specific number of times.

Syntax for (init; condition; increment) {

 statement(s);

}

Here is the flow of control in a 'for' loop −

• The init step is executed first, and only

once. This step allows you to declare

and initialize any loop control

variables. You are not required to put

a statement here, as long as a

semicolon appears.

• Next, the condition is evaluated. If it is

true, the body of the loop is executed.

If it is false, the body of the loop does

not execute and the flow of control

jumps to the next statement just after

the 'for' loop.

• After the body of the 'for' loop

executes, the flow of control jumps

back up to the increment statement.

This statement allows you to update

any loop control variables. This

statement can be left blank, as long as a semicolon appears after the

condition.

• The condition is now evaluated again. If it is true, the loop executes and the

process repeats itself (body of loop, then increment step, and then again

condition). After the condition becomes false, the 'for' loop terminates.

Example:

#include <stdio.h>

int main ()

{

 int a;

 for(a = 10; a < 20; a = a + 1)

{

printf("value of a: %d\n", a);

 }

 return 0;

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

do...while loop

Unlike for and while loops, which test the loop condition at the top of the loop,

the do...while loop in C programming checks its condition at the bottom of the

loop.A do...while loop is similar to a while loop, except the fact that it is

guaranteed to execute at least one time.

Syntax do {

 statement(s);

} while(condition);

Notice that the conditional expression appears

at the end of the loop, so the statement(s) in

the loop executes once before the condition is

tested.If the condition is true, the flow of

control jumps back up to do, and the

statement(s) in the loop executes again. This

process repeats until the given condition

becomes false.

Example:

#include <stdio.h>

int main ()

{

 int a = 10;

 do

{

printf("value of a: %d\n", a);

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

 a = a + 1;

 }while(a < 20);

 return 0;

}

value of a: 17

value of a: 18

value of a: 19

nested loops

C programming allows to use one loop inside another loop.

The syntax for a nested for loop statement in C is as follows –

for (init; condition; increment) {

 for (init; condition; increment) {

 statement(s);

 }

 statement(s);

}

The syntax for a nested while loop statement in C is as follows −

while(condition) {

 while(condition) {

 statement(s);

 }

 statement(s);

}

The syntax for a nested do...while loop statement in C is as follows −

do {

 statement(s);

 do {

 statement(s);

 }while(condition);

}while(condition);

A final note on loop nesting is that you can put any type of loop inside any other

type of loop. For example, a 'for' loop can be inside a 'while' loop or vice versa.

Example:

#include <stdio.h>

int main ()

{

inti, j;

 for(i = 2; i<30; i++)

{

 for(j = 2; j <= (i/j); j++)

 if(!(i%j)) break;

Output:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

 if(j > (i/j)) printf("%d is prime\n", i);

 }

 return 0;

}

23 is prime

29 is prime

LOOP CONTROL STATEMENTS

Loop control statements change execution from its normal sequence. When

execution leaves a scope, all automatic objects that were created in that scope

are destroyed.C supports the following control statements.

Sl.No. Control Statement & Description

1 break statement:Terminates the loop or switch statement and transfers

execution to the statement immediately following the loop or switch.

2 continue statement:Causes the loop to skip the remainder of its body

and immediately retest its condition prior to reiterating.

3 goto statement:Transfers control to the labelled statement.

break statement

The break statement in C programming has the following two usages −

• When a break statement is encountered

inside a loop, the loop is immediately

terminated and the program control

resumes at the next statement following

the loop.

• It can be used to terminate a case in the

switch statement (covered in the next

chapter).

If you are using nested loops, the break

statement will stop the execution of the

innermost loop and start executing the next line

of code after the block.

Syntax break;

Example:

#include <stdio.h>

int main ()

{

 int a = 10;

 while(a < 20)

{

printf("value of a: %d\n", a);

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

 a++;

 if(a > 15)

{

 break;

 }

 }

return 0;

}

continue statement

The continue statement in C programming works

somewhat like the break statement. Instead of

forcing termination, it forces the next iteration

of the loop to take place, skipping any code in

between.For the for loop, continue statement

causes the conditional test and increment

portions of the loop to execute. For the while

and do...while loops, continue statement causes

the program control to pass to the conditional

tests.

Syntax continue;

Example:

#include <stdio.h>

int main ()

{

 int a = 10;

 do

{

 if(a == 15)

{

 a = a + 1;

 continue;

 }

printf("value of a: %d\n", a);

 a++;

 } while(a < 20);

 return 0;

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

goto statement

A goto statement in C programming provides an unconditional jump from the 'goto'

to a labelled statement in the same function.

NOTE − Use of goto statement is highly discouraged in any programming language

because it makes difficult to trace the control flow of a program, making the

program hard to understand and hard to modify. Any program that uses a goto can

be rewritten to avoid them.

Syntax goto label;

..

label: statement;

Example:

#include <stdio.h>

int main ()

{

 int a = 10;

LOOP:do

{

 if(a == 15)

{

 a = a + 1;

goto LOOP;

 }

printf("value of a: %d\n", a);

 a++;

 }while(a < 20);

 return 0;

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

The Infinite Loop

A loop becomes an infinite loop if a condition never becomes false. The for loop is

traditionally used for this purpose. Since none of the three expressions that form

the 'for' loop are required, you can make an endless loop by leaving the

conditional expression empty.

Example:

#include <stdio.h>

int main ()

{

 for(; ;)

 {

printf("This loop will run forever.\n");

 }

 return 0;

}

When the conditional expression is absent, it is assumed to be true. You may have

an initialization and increment expression, but C programmers more commonly

use the for(;;) construct to signify an infinite loop.

NOTE − You can terminate an infinite loop by pressing Ctrl + C keys.

PRACTICE

In this program user is asked to enter the age and based on the input, the

if..else statement checks whether the entered age is greater than or equal to

18. If this condition meet then display message “You are eligible for voting”,

however if the condition doesn’t meet then display a different message “You

are not eligible for voting”.

#include <stdio.h>

#include <conio.h>

void main()

{

 int age;

clrscr();

printf("Enter your age:");

scanf("%d",&age);

 if(age >=18)

 {

 printf("You are eligible for voting");

 }

 else

 {

 printf("You are not eligible for

voting");

 }

getch();

}

Output:

Enter your age:14

You are not eligible for voting

Program to calculate the sum of first n natural numbers.

Positive integers 1,2,3...n are known as natural numbers.

#include <stdio.h>

#include <conio.h>

void main()

{

intnum, count, sum = 0;

Output:

Enter a positive integer: 10

Sum = 55

clrscr();

printf("Enter a positive integer: ");

scanf("%d", &num);

 for(count = 1; count <= num; ++count)

 {

 sum += count;

 }

printf("Sum = %d", sum);

getch();

}

Print numbers from 1 to 5

#include <stdio.h>

#include <conio.h>

void main()

{

int i = 1;

clrscr();

 while (i<= 5)

 {

printf("%d\n", i);

 ++i;

 }

getch();

}

Output:

1

2

3

4

5

Print numbers from 1 to 5

#include <stdio.h>

#include <conio.h>

void main()

{

int i = 1;

clrscr();

 do

 {

printf("%d\n", i);

 ++i;

 }

 while (i<= 5)

getch();

}

Output:

1

2

3

4

5

Use of break in a for loop

#include <stdio.h> Output:

#include <conio.h>

void main()

{

int num = 5;

clrscr();

while (num > 0)

{

 if (num == 3)

 {

break;

 }

printf("%d\n", num);

 num--;

}

getch();

}

5

4

Example: continue statement inside for loop- Value 4 is missing in the output,

why? When the value of variable j is 4, the program encountered a continue

statement, which makes the control to jump at the beginning of the for loop

for next iteration, skipping the statements for current iteration (that’s the

reason printf didn’t execute when j is equal to 4).

#include <stdio.h>

#include <conio.h>

void main()

{

 for (int j=0; j<=8; j++)

 {

 if (j==4)

 {

 continue;

 }

printf("%d ", j);

 }

getch();

}

Output:

0 1 2 3 5 6 7 8

Example of goto statement- In this example, we have a label addition and when

the value of i (inside loop) is equal to 5 then we are jumping to this label using

goto. This is reason the sum is displaying the sum of numbers till 5 even though

the loop is set to run from 0 to 10.

#include <stdio.h>

#include <conio.h>

void main()

{

int sum=0;

clrscr();

for(inti = 0; i<=10; i++)

{

Output:

15

sum = sum+i;

if(i==5)

{

goto addition;

}

}

addition:

printf("%d", sum);

getch();

}

Factorial in C using a for loop

#include <stdio.h>

#include <conio.h>

void main()

{

 int c, n, f = 1;

clrscr();

printf("Enter a number to calculate its factorial\n");

scanf("%d", &n);

 for (c = 1; c <= n; c++)

 {

 f = f * c;

 }

printf("Factorial of %d = %d\n", n, f);

getch();

}

Output:

Convert temperature from Centigrade to Fahrenheit

#include<stdio.h>

#include <conio.h>

void main ()

{

 float temp_c, temp_f;

clrscr();

printf (“Enter the value of Temperature in Celcius: “);

scanf (“%f”, &temp_c);

temp_f = (1.8 * temp_c) + 32;

printf (“The Temperature in Fahreinheit is: %f”, temp_f);

getch();

}

Convert temperature from Fahrenheit to Celsius.

#include <stdio.h>

#include <conio.h>

void main ()

{

 float celsius, fahrenheit;

clrscr();

printf("Enter temperature in Fahrenheit: ");

scanf("%f", &fahrenheit);

celsius = (fahrenheit - 32) * 5 / 9;

printf("%.2f Fahrenheit = %.2f Celsius", fahrenheit, celsius);

getch();

}

C Program to Check whether a number is Prime or not

#include <stdio.h>

#include <conio.h>

void main ()

 {

int n, i, c = 0;

clrscr();

printf("Enter any number n:");

scanf("%d", &n);

 for (i = 1; i<= n; i++)

{

if (n % i == 0)

{

c++;

}

 }

 if (c == 2)

{

printf("n is a Prime number");

}

 else

{

printf("n is not a Prime number");

}

getch();

}

Output:

Enter any number n: 7

n is Prime

Calculate roots of a quadratic equation.

#include<stdio.h>

#include<math.h>

#include <conio.h>

void main ()

{

 float a,b,c;

 float d,root1,root2;

clrscr();

printf("Enter a, b and c of quadratic equation: ");

scanf("%f%f%f",&a,&b,&c);

 d = b * b - 4 * a * c;

 if(d < 0)

{

printf("Roots are complex number.\n");

printf("Roots of quadratic equation are: ");

printf("%.3f%+.3fi",-b/(2*a),sqrt(-d)/(2*a));

printf(", %.3f%+.3fi",-b/(2*a),-sqrt(-d)/(2*a));

}

 else if(d==0)

{

printf("Both roots are equal.\n");

 root1 = -b /(2* a);

printf("Root of quadratic equation is: %.3f ",root1);

}

 else

{

printf("Roots are real numbers.\n");

root1 = (-b + sqrt(d)) / (2* a);

root2 = (-b - sqrt(d)) / (2* a);

printf("Roots of quadratic equation are: %.3f , %.3f",root1,root2);

}

getch();

}

Output:

Enter a, b and c of quadratic equation: 2 4 1

Roots are real numbers.

Roots of quadratic equation are: -0.293, -1.707

C program to find the largest number in a given list and its location in the list.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[10], Size, i, Largest, Position;

clrscr();

printf("\n Please Enter the size of an array \n");

scanf("%d",&Size);

printf("\n Please Enter %d elements of an array: \n", Size);

 for(i=0; i<Size; i++)

 {

scanf("%d",&a[i]);

 }

 Largest = a[0];

 for(i=1; i<Size; i++)

 {

 if(Largest<a[i])

 {

 Largest = a[i];

 Position = i;

 }

 }

printf("\n Largest element in an Array = %d", Largest);

printf("\n Index position of the Largest element = %d", Position);

getch();

}

C program to find the smallest number in a given list and its location in the list.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[10], Size, i, Smallest, Position;

clrscr();

printf("\n Please Enter the size of an array \n");

scanf("%d",&Size);

printf("\n Please Enter %d elements of an array: \n", Size);

 for(i=0; i<Size; i++)

 {

scanf("%d",&a[i]);

 }

 Smallest = a[0];

 for(i=1; i<Size; i++)

 {

 if(Smallest>a[i])

 {

 Smallest = a[i];

 Position = i;

 }

 }

printf("\n Smallest element in an Array = %d", Smallest);

printf("\n Index position of the smallest element = %d", Position);

getch();

}

C program to find the sum and average of n numbers.

#include<stdio.h>

#include<conio.h>

void main()

{

inti, n, Sum=0, numbers;

 float Average;

clrscr();

printf("\n Please Enter How many Number you want? \n");

scanf("%d",&n);

printf("\n Please Enter the elements one by one \n");

 for(i=0; i<n; ++i)

 {

scanf("%d",&numbers);

 Sum = Sum+numbers;

 }

 Average = Sum/n;

printf("\n Sum of the %d Numbers = %d",n, Sum);

printf("\n Average of the %d Numbers = %.2f",n, Average);

getch();

}

C program to arrange numbers in ascending order.

#include<stdio.h>

#include<conio.h>

void main()

{

 int Array[50], i, j, temp, Size;

 clrscr();

 printf("\n Please Enter the Number of elements in an array : ");

 scanf("%d", &Size);

 printf("\n Please Enter %d elements of an Array \n", Size);

 for (i=0; i<Size; i++)

 {

 scanf("%d", &Array[i]);

 }

 for (i=0; i<Size; i++)

 {

 for (j=i+1; j<Size; j++)

 {

 if(Array[i] > Array[j])

 {

 temp = Array[i];

 Array[i] = Array[j];

 Array[j] = temp;

 }

 }

 }

 printf("\n **** Array of Elemenst in Ascending Order are : **** \n");

 for (i=0; i<Size; i++)

 {

 printf("%d\t", Array[i]);

 }

 getch();

}

C program to arrange numbers in descending order.

#include<stdio.h>

#include<conio.h>

void main()

{

 int Array[50], i, j, temp, Size;

 clrscr();

 printf("\n Please Enter the Number of elements in an array : ");

 scanf("%d", &Size);

 printf("\n Please Enter %d elements of an Array \n", Size);

 for (i=0; i<Size; i++)

 {

 scanf("%d", &Array[i]);

 }

 for (i=0; i<Size; i++)

 {

 for (j=i+1; j<Size; j++)

 {

 if(Array[i] < Array[j])

 {

 temp = Array[i];

 Array[i] = Array[j];

 Array[j] = temp;

 }

 }

 }

 printf("\n **** Array of Elemenst in Descending Order are : **** \n");

 for (i=0; i<Size; i++)

 {

 printf("%d\t", Array[i]);

 }

 getch();

}

C program to find area of circle.

#include<stdio.h>

#include<conio.h>

#define PI 3.14

void main()

{

 float radius, area, circumference;

clrscr();

printf("\n Please Enter the radius of a circle\n");

scanf("%f",&radius);

 area = PI*radius*radius;

 circumference = 2*PI*radius;

printf("\n Area Of a Circle = %.2f\n", area);

printf("\n Circumference Of a Circle = %.2f\n", circumference);

getch();

}

C program to find surface area and volume of sphere.

#include<stdio.h>

#include<conio.h>

#define PI 3.14

void main()

{

 float radius, sa, Volume;

clrscr();

printf("\n Please Enter the radius of a Sphere \n");

scanf("%f", &radius);

sa = 4*PI*radius*radius;

 Volume = (4.0/3)*PI*radius*radius*radius;

printf("\n The Surface area of a Sphere = %.2f", sa);

printf("\n The Volume of a Sphere = %.2f", Volume);

getch();

}

Short Question

1. What’s the constant?

2. What is variable?

3. What is operator?

4. Define Expression.

5. Define while loop.

6. Define For loop.

Long Questions

1. Explain the decision control and looping statement.

2. Discuss the different types of operator used in programming language.

CH-7 ADVANCED FEATURES OF C

PARAMETER PASSING TECHNIQUES IN C

In C we can pass parameters in two different ways. These are call by value, and

call by reference.

Function call by Value in C

The call by value method of passing arguments to a function copies the actual

value of an argument into the formal parameter of the function. In this case,

changes made to the parameter inside the function have no effect on the

argument.By default, C programming uses call by value to pass arguments. In

general, it means the code within a function cannot alter the arguments used to

call the function. Consider the function swap() definition as follows.

void swap(int x, int y)

{

 int temp;

 temp = x; /* save the value of x */

 x = y; /* put y into x */

 y = temp; /* put temp into y */

 return;

}

Now, let us call the function swap() by passing actual values as in the following

example –

#include <stdio.h>

void swap(int x, int y);

int main ()

{

 int a = 100;

 int b = 200;

printf("Before swap, value of a : %d\n", a);

printf("Before swap, value of b : %d\n", b);

 swap(a, b);

printf("After swap, value of a : %d\n", a);

printf("After swap, value of b : %d\n", b);

 return 0;

}

Output:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

It shows that there are no changes in the values, though they had been changed

inside the function.

Function call by reference in C

The call by reference method of passing arguments to a function copies the

address of an argument into the formal parameter. Inside the function, the

address is used to access the actual argument used in the call. It means the

changes made to the parameter affect the passed argument.To pass a value by

reference, argument pointers are passed to the functions just like any other

value. So accordingly you need to declare the function parameters as pointer

types as in the following function swap(), which exchanges the values of the two

integer variables pointed to, by their arguments.

void swap(int *x, int *y)

{

 int temp;

 temp = *x; /* save the value at address x */

 *x = *y; /* put y into x */

 y = temp; / put temp into y */

 return;

}

Let us now call the function swap() by passing values by reference as in the

following example –

#include <stdio.h>

void swap(int *x, int *y);

int main ()

{

 int a = 100;

 int b = 200;

printf("Before swap, value of a : %d\n", a);

printf("Before swap, value of b : %d\n", b);

 swap(&a, &b);

printf("After swap, value of a : %d\n", a);

printf("After swap, value of b : %d\n", b);

 return 0;

}

Output:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

It shows that the change has reflected outside the function as well, unlike call by

value where the changes do not reflect outside the function.

C – SCOPE OF VARIABLES

A scope in any programming is a region of the program where a defined variable

can have its existence and beyond that variable it cannot be accessed. There are

three places where variables can be declared in C programming language −

• Inside a function or a block which is called local variables.

• Outside of all functions which is called global variables.

• In the definition of function parameters which are called formal parameters.

Local Variables

Variables that are declared inside a function or block are called local variables.

They can be used only by statements that are inside that function or block of

code. Local variables are not known to functions outside their own. The following

example shows how local variables are used. Here all the variables a, b, and c are

local to main() function.

#include <stdio.h>

int main ()

{

 int a, b;

 int c;

 a = 10;

 b = 20;

 c = a + b;

printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

 return 0;

}

Global Variables

Global variables are defined outside a function, usually on top of the program.

Global variables hold their values throughout the lifetime of your program and

they can be accessed inside any of the functions defined for the program.A global

variable can be accessed by any function. That is, a global variable is available for

use throughout your entire program after its declaration. The following program

show how global variables are used in a program.

#include <stdio.h>

int g;

int main ()

{

 int a, b;

 a = 10;

 b = 20;

 g = a + b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

 return 0;

}

A program can have same name for local and global variables but the value of

local variable inside a function will take preference. Here is an example –

 #include <stdio.h>

int g = 20;

int main ()

{

 int g = 10;

printf ("value of g = %d\n", g);

 return 0;

}

Output:

 value of g = 10

Formal Parameters

Formal parameters, are treated as local variables with-in a function and they take

precedence over global variables. Following is an example –

#include <stdio.h>

int a = 20;

int main ()

{

 int a = 10;

 int b = 20;

 int c = 0;

printf ("value of a in main() = %d\n", a);

 c = sum(a, b);

printf ("value of c in main() = %d\n", c);

 return 0;

}

int sum(int a, int b)

{

printf ("value of a in sum() = %d\n", a);

printf ("value of b in sum() = %d\n", b);

 return a + b;

}

Output:

value of a in main() = 10

value of a in sum() = 10

value of b in sum() = 20

value of c in main() = 30

Initializing Local and Global Variables

When a local variable is defined, it is not initialized by the system, you must

initialize it yourself. Global variables are initialized automatically by the system

when you define them as follows –

Data Type Initial Default Value

int 0

char '\0'

float 0

double 0

pointer NULL

It is a good programming practice to initialize variables properly, otherwise your

program may produce unexpected results, because uninitialized variables will take

some garbage value already available at their memory location.

C - STORAGE CLASSES

A storage class defines the scope (visibility) and life-time of variables and/or

functions within a C Program. They precede the type that they modify. We have

four different storage classes in a C program −

 1. auto 2. register 3. static 4. extern

The auto Storage Class

The auto storage class is the default storage class for all local variables.

{

 int mount;

 auto int month;

}

The example above defines two variables with in the same storage class. 'auto' can

only be used within functions, i.e., local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored in

a register instead of RAM. This means that the variable has a maximum size equal

to the register size (usually one word) and can't have the unary '&' operator

applied to it (as it does not have a memory location).

{

 register int miles;

}

The register should only be used for variables that require quick access such as

counters. It should also be noted that defining 'register' does not mean that the

variable will be stored in a register. It means that it MIGHT be stored in a register

depending on hardware and implementation restrictions.

The static Storage Class

The static storage class instructs the compiler to keep a local variable in existence

during the life-time of the program instead of creating and destroying it each time

it comes into and goes out of scope. Therefore, making local variables static

allows them to maintain their values between function calls.The static modifier

may also be applied to global variables. When this is done, it causes that variable's

scope to be restricted to the file in which it is declared.In C programming, when

static is used on a global variable, it causes only one copy of that member to be

shared by all the objects of its class.

Example:

#include <stdio.h>

void func(void);

static int count = 5;

main()

{

 while(count--)

{

func();

 }

return 0;

}

void func(void)

{

 static int i = 5;

i++;

printf("i is %d and count is %d\n", i,

count);

}

Output:

i is 6 and count is 4

i is 7 and count is 3

i is 8 and count is 2

i is 9 and count is 1

i is 10 and count is 0

The extern Storage Class

The extern storage class is used to give a reference of a global variable that is

visible to ALL the program files. When you use 'extern', the variable cannot be

initialized however, it points the variable name at a storage location that has

been previously defined.When you have multiple files and you define a global

variable or function, which will also be used in other files, then extern will be

used in another file to provide the reference of defined variable or function. Just

for understanding, extern is used to declare a global variable or function in

another file.The extern modifier is most commonly used when there are two or

more files sharing the same global variables or functions as explained below.

First File: main.c

#include <stdio.h>

int count ;

extern void write_extern();

main()

{

 count = 5;

write_extern();

}

Second File: support.c

#include <stdio.h>

extern int count;

void write_extern(void)

{

printf("count is %d\n", count);

}

Here, extern is being used to declare count in the second file, where as it has

its definition in the first file, main.c. Now, compile these two files as follows –

$gccmain.csupport.c

It will produce the executable program a.out. When this program is executed, it

produces the following result −

count is 5

C – RECURSION

Recursion is the process of repeating items in a self-similar way. In programming

languages, if a program allows you to call a function inside the same function,

then it is called a recursive call of the function.

void recursion()

{

 recursion();

}

int main()

{

 recursion();

}

The C programming language supports recursion, i.e., a function to call itself. But

while using recursion, programmers need to be careful to define an exit condition

from the function, otherwise it will go into an infinite loop.Recursive functions are

very useful to solve many mathematical problems, such as calculating the factorial

of a number, generating Fibonacci series, etc.

Types of Recursions:

Recursion are mainly of two types depending on whether a function calls itself

from within itself or more than one function call one another mutually. The first

one is called direct recursion and another one is called indirect recursion. Thus,

the two types of recursion are:

1. Direct Recursion:These can be further categorized into four types:

a) Tail Recursion: If a recursive function calling itself and that recursive call is

the last statement in the function then it’s known as Tail Recursion.After that call

the recursive function performs nothing. The function has to process or perform

any operation at the time of calling and it does nothing at returning time.

Example:

#include <stdio.h>

void fun(int n)

{

 if (n > 0)

{

printf("%d ", n);

 fun(n - 1);

 }

}

int main()

{

 int x = 3;

 fun(x);

 return 0;

}

Output:

3 2 1

b) Head Recursion:If a recursive function calling itself and that recursive call is

the first statement in the function then it’s known as Head Recursion.There’s no

statement, no operation before the call. The function doesn’t have to process or

perform any operation at the time of calling and all operations are done at

returning time.

Example:

#include <stdio.h>

void fun(int n)

{

 if (n > 0)

{

 fun(n - 1);

printf("%d ", n);

 }

}

int main()

{

 int x = 3;

 fun(x);

 return 0;

}

Output:

1 2 3

c) Tree Recursion: To understand Tree Recursion let’s first understand Linear

Recursion. If a recursive function calling itself for one time then it’s known as

Linear Recursion. Otherwise if a recursive function calling itself for more than one

time then it’s known as Tree Recursion.

Example:

#include <stdio.h>

void fun(int n)

{

 if (n > 0)

{

printf("%d ", n);

 fun(n - 1);

 fun(n - 1);

 }

}

int main()

{

 fun(3);

 return 0;

}

Output:

3 2 1 1 2 1 1

d) Nested Recursion: In this recursion, a recursive function will pass the

parameter as a recursive call.That means “recursion inside recursion”. Let see the

example to understand this recursion.

Example:

#include <stdio.h>

int fun(int n)

{

 if (n > 100)

 return n - 10;

 return fun(fun(n + 11));

}

int main()

{

 int r;

 r = fun(95);

printf("%d\n", r);

 return 0;

}

Output:

91

2.Indirect Recursion:In this recursion, there may be more than one functions

and they are calling one another in a circular manner.

Example:

#include <stdio.h>

void funB(int n);

void funA(int n)

{

 if (n > 0)

{

printf("%d ", n);

funB(n - 1);

 }

}

void funB(int n)

{

 if (n > 1)

{

printf("%d ", n);

funA(n / 2);

 }

}

int main()

{

funA(20);

 return 0;

}

Output:

20 19 9 8 4 3 1

Examples:

Number Factorial:

#include <stdio.h>

unsigned long longint factorial(unsigned inti)

{

 if(i<= 1)

 {

 return 1;

 }

 return i * factorial(i - 1);

}

int main()

{

int i = 12;

printf("Factorial of %d is %d\n", i, factorial(i));

 return 0;

}

Output:

Factorial of 12 is 479001600

Fibonacci Series:

#include <stdio.h>

intfibonacci(inti)

{

 if(i == 0)

{

 return 0;

 }

 if(i == 1)

{

 return 1;

 }

 return fibonacci(i-1) + fibonacci(i-2);

}

int main()

{

inti;

 for (i = 0; i< 10; i++)

{

printf("%d\t\n", fibonacci(i));

 }

 return 0;

}

Output:

0

1

1

2

3

5

8

13

21

34

C – ARRAYS

Arrays a kind of data structure that can store a fixed-size sequential collection of

elements of the same type. An array is used to store a collection of data, but it is

often more useful to think of an array as a collection of variables of the same

type.Instead of declaring individual variables, such as number0, number1, ..., and

number99, you declare one array variable such as numbers and use numbers[0],

numbers[1], and ..., numbers[99] to represent individual variables. A specific

element in an array is accessed by an index.

One Dimensional Array

An one dimensional array consist of contiguous memory locations. The lowest

address corresponds to the first element and the highest address to the last

element.

Declaring One Dimensional Array:

 double balance[10];

Initializing One Dimensional Array:

 double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

Accessing One Dimensional Array Elements:

 double salary = balance[9];

Example:

#include <stdio.h>

int main ()

{

 int n[10];

inti,j;

 for (i = 0; i< 10; i++)

{

 n[i] = i + 100;

 }

 for (j = 0; j < 10; j++)

{

printf("Element[%d] = %d\n", j, n[j]);

 }

 return 0;

}

Output:

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

Multi-dimensional Array

C programming language allows multidimensional arrays.The simplest form of

multidimensional array is the two-dimensional array. A two-dimensional array is,

in essence, a list of one-dimensional arrays.

Declaring Two-Dimensional Array:

 type arrayName [x][y];

Initializing Two-Dimensional Array:

 int a[3][4] ={{0, 1, 2, 3} , {4, 5, 6, 7} , {8, 9, 10, 11}};

Accessing Two-Dimensional Array Elements:

 intval = a[2][3];

Example:

#include <stdio.h>

int main ()

{

 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

inti, j;

 for (i = 0; i< 5; i++)

 {

 for (j = 0; j < 2; j++)

 {

printf("a[%d][%d] = %d\n", i,j, a[i][j]);

 }

 }

 return 0;

}

Output:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

C – STRINGS

Strings are actually one-dimensional array of characters terminated by a null

character '\0'. The following declaration and initialization create a string

consisting of the word "Hello". To hold the null character at the end of the array,

the size of the character array containing the string is one more than the number

of characters in the word "Hello."

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization then you can write the above

statement as follows – char greeting[] = "Hello";

Example:
#include <stdio.h>
int main ()
{
 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
printf("Greeting message: %s\n", greeting);
 return 0;
}

Output:
Greeting message: Hello

C – POINTERS

A pointer is a variable whose value is the address of another variable, i.e., direct

address of the memory location. Like any variable or constant, you must declare a

pointer before using it to store any variable address. The general form of a pointer

variable declaration is −

 type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name

is the name of the pointer variable. The asterisk * used to declare a pointer is the

same asterisk used for multiplication. However, in this statement the asterisk is

being used to designate a variable as a pointer. Take a look at some of the valid

pointer declarations −

int *ip;

double *dp;

float *fp;

char *ch;

The actual data type of the value of all pointers, whether integer, float,

character, or otherwise, is the same, a long hexadecimal number that represents

a memory address. The only difference between pointers of different data types is

the data type of the variable or constant that the pointer points to.

Example:

#include <stdio.h>

int main ()

{

 int var = 20;

int *ip;

ip = &var;

printf("Adrs of var variable: %x\n", &var);

printf("Adrs stored in ip variable: %x\n", ip);

printf("Value of *ip variable: %d\n", *ip);

 return 0;

}

Output:

Adrs of var variable: bffd8b3c

Adrs stored in ip variable: bffd8b3c

Value of *ip variable: 20

STRUCTURES IN C

A structure is a user defined data type

in C/C++. A structure creates a data

type that can be used to group items

of possibly different types into a

single type.

UNION IN C

Like Structures, union is a user

defined data type. In union, all

members share the same memory

location.

Short Questions

1. What is string?

2. What is Array?

3. Define call by value.

4. What is pointer?

Long Question

1. Differentiate between structure and union.

2. Differentiate between the call by value and call by reference.

3. What’s Array ? Discuss it’s types.

BEST OF

LUCK

